
Does your software do what it
should?

User guide to specification and verification
with the Java Modeling Language and

OpenJML

David R. Cok
david.r.cok@gmail.com

DRAFT July 1, 2022
This document is being actively expanded, edited and reviewed.
Comments are welcome. We intend for a final version to be

available by fall 2022.

Copyright (c) 2010-2022 by David R. Cok. Permission is granted to make and distribute
copies of this document for educational or research purposes, provided that the copy-
right notice and permission notice are preserved and acknowledgment is given in pub-
lications. Modified versions of the document may not be made. Please forward cor-
rections to the author. Incorporating this document within a larger collection, or dis-
tributing it for commercial purposes, or including it as part or all of a product for sale is
allowed only by separate written permission from the author.

Foreword

OpenJML is the principal set of tools that workwith the JavaModeling Language
(JML). OpenJML combines an extended static checking tool (ESC), a runtime
assertion checking compiler, and a few other tools for JML. OpenJML’s ESC tool
is the most powerful and useful automated verifier for JML that is maintained as
of this writing (in 2022). As such it is indispensable in working with JML.

I have worked with David Cok for over twenty years, since the time when we
began work on the Java Modeling Language at Iowa State University, where I
was a professor of Computer Science. He first started contributing to the Iowa
State tools for JML that were developed by several of my PhD students at Iowa
State University (notably Yoonsik Cheon, Clyde Ruby, and Curtis Clifton). At
the time the Iowa State tools for JML were developed based on the Kopi Java
compiler, which was an open source Java compiler.

He wrote the first version of the documentation tool, jmldoc, which displayed
all the JML specifications for a Java class or interface, and its methods, as a web
page. (This is useful since types inherit specifications for all their supertypes in
JML.)

After his work on the Iowa State tools, David worked with Joseph Kiniry to ex-
tend the ESC/Java tool from Digital Equipment Corporation (as ESC/Java2 [1212])
to be fully integrated with JML and Java 4.

However, as Java was rapidly evolving, it soon became clear to David and others
in the JML community that it was difficult to keep tools for JML up to date with
new Java features, particularly generics, which were introduced in Java 5. (At
the same time, support for the Kopi Java compiler was discontinued, leaving
the Iowa State tools without a clear way to incorporate new features such as
generics.) Discussions among JML tool developers, including David, hit on the

i

ii

idea of basing the JML tools on theOpenJDK compiler, whichwas an open source
version of Java that Sun would be guaranteed to maintain (as it was, and is, the
basis for new releases of Java, now produced by Oracle). After some prototyping
David decided that this was indeed a good idea, and he personally started the
work to base tools for JML on the OpenJDK compiler, producing the OpenJML
[1111, 1414, 88, 1010] tool. Since then he has continuedwork onOpenJML as its principal
developer.

David has also made many contributions to the design of JML itself. His insights
are particularly appreciated, as they are based on his experience in consulting
on specification and verification projects and his work on OpenJML. His con-
tributions to Dafny and ACSL++ and his experience with Ada and Spec# have
also influenced OpenJML and our joint work on JML. The JML community and
myself have been fortunate to have David as a close colleague and continuing
contributor over the past two decades.

Dr. Gary T. Leavens
Professor of Computer Science
University of Central Florida
Orlando, Florida, USA May, 2022

Preface

The JavaModeling Language (JML) project started in about 1997 with the goal of
enhancing the capability of specification and automated verification to improve
the development of software. A current review article [2424] summarizes some of
the experience and challenges of this project.

The OpenJML tool, in development since 2006, performs the work of checking
that specifications written in JML match implementations written in Java. Open-
JML is conceptually built on ESC/Java, written at DEC SRC in the late 1990’s [1717],
which this author extended to ESC/Java2 [1212]making the tool current with then-
current Java and JML. Though OpenJML builds on the same concepts and tech-
nical decisions as ESC/Java and ESC/Java2, it is a clean rewrite of the software.
The incarnation OpenJML described in this document is based on OpenJDK, is
compatible with Java 17, and has been used in both industrial and academic
applications. The JML language and the OpenJML tool are similar in concept to
the specification languages and tools for other programming languages; they
thus fit within the wider research and development endeavor to create specifi-
cation and verification capabilities that work well with the day-to-day work of
conventional software programming.

This book itself is just the user guide and reference manual for OpenJML. The
most current version of this document is maintained on-line at
www.openjml.org/documentation/OpenJMLUserGuide.pdfwww.openjml.org/documentation/OpenJMLUserGuide.pdf.

• It is not a language guide. For that see the JML Reference Manual:
https://www.openjml.org/documentation/JML_Reference_Manual.pdfhttps://www.openjml.org/documentation/JML_Reference_Manual.pdf.

• It is not a tutorial. For that see the online OpenJML tutorial at
https://www.openjml.org/tutorialhttps://www.openjml.org/tutorial.

• It is not a discussion of how to develop the source code for the tool. For

iii

www.openjml.org/documentation/OpenJMLUserGuide.pdf
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://www.openjml.org/tutorial

iv

that see the github project at https://github.com/OpenJML/OpenJMLhttps://github.com/OpenJML/OpenJML.

• It is not general guide to research and projects related to JML. For that see
the JML project website at http://www.jmlspecs.orghttp://www.jmlspecs.org.

• It is not a comparison to other tools. One other relevant project is the
KeY project: https://www.key-project.org/https://www.key-project.org/ [2222]— including a book about KeY:
https://www.key-project.org/thebook2/https://www.key-project.org/thebook2/ [22]

OpenJML, though developed primarily byDavid R. Cok, has benefited frommany
sources:

• The JML initiative, started and overseen by Gary Leavens.

• A long history of research on the Java Modeling Language itself, as re-
flected in the publications list on the JML project web site:
http://www.jmlspecs.orghttp://www.jmlspecs.org.

• The work on previous and succeeding languages and tools for other pro-
gramming languages, most notably

– the Frama-C project (https://www.frama-c.comhttps://www.frama-c.com)
– and Dafny (https://github.com/dafny-lang/dafnyhttps://github.com/dafny-lang/dafny).

• Previous work on JML tools preceding OpenJML, such as EscJava [1717], Es-
cJava2 [1212], and the ISU suite of tools [77].

• Occasional individual contributors to OpenJML itself.

• The OpenJDK compiler framework on which OpenJML is built:
https://www.openjdk.orghttps://www.openjdk.org.

• The cross-fertilization with colleagues at the KeY project:
https://www.key-project.org/https://www.key-project.org/.

https://github.com/OpenJML/OpenJML
http://www.jmlspecs.org
https://www.key-project.org/
https://www.key-project.org/thebook2/
http://www.jmlspecs.org
https://www.frama-c.com
https://github.com/dafny-lang/dafny
https://www.openjdk.org
https://www.key-project.org/

Contents

1 Introduction to JML and OpenJML 11
1.1 Why specify? Why check? . 22
1.2 Background on OpenJML . 33
1.3 Other resources . 55
1.4 Sources of Technology . 66
1.5 License . 66
1.6 Use of this document . 77

2 Installation 88
2.1 Installing OpenJML . 88
2.2 Organization of the installation 99
2.3 Local customization . 1010

3 The OpenJML Command-line Tool 1111
3.1 Command-line structure . 1111
3.2 Files and Folders . 1111
3.3 Output . 1212
3.4 Exit values . 1212
3.5 Other aspects of the environment 1313

4 OpenJML Concepts 1515
4.1 Specifications in .java and .jml files 1515
4.2 Finding files and classes: class, source, and specs paths 1515
4.3 OpenJML options, Java properties and theopenjml.properties

file . 1818
4.4 SMT provers . 2121
4.5 Conditional JML annotations (-keys option) 2121

v

CONTENTS vi

4.6 Annotations and the runtime library 2222
4.7 Defaults for binary classes . 2323
4.8 Redundancy in JML and OpenJML 2323
4.9 Nullness and non-nullness of references 2424

4.9.1 Background on non-null annotations and types 2424
4.9.2 JML features for nullness 2525
4.9.3 Nullness annotations for array declarations 2626
4.9.4 Nullness for binary classes 2626

4.10 Arithmetic modes . 2727
4.10.1 Integer arithmetic . 2727
4.10.2 Floating point arithmetic 2828

4.11 Integers and bit-vectors (--esc-bv option) 2828
4.11.1 Specification inference 2929

5 OpenJML Options 3131
5.1 General rules about options . 3737
5.2 Options: Operational modes . 3838
5.3 Options: JML tools . 3838
5.4 Options: OpenJML options applicable to all OpenJML opera-

tional modes . 3939
5.5 Options: JML Information and debugging 4040
5.6 Java Options: Version of Java language or class files 4141
5.7 Java Options: Other Java compiler options applicable to OpenJML 4242
5.8 Control of lint-like warnings . 4343
5.9 Java options related to annotation processing 4444
5.10 Java options related to modules 4444

6 OpenJML tools — Parsing and Type-checking 4545
6.1 Parsing . 4545
6.2 Type-checking JML specifications 4646
6.3 Command-line options for type-checking 4646

7 OpenJML tools — Static Deductive Verification (ESC) 4747
7.1 Results of the static verification tool 4747

7.1.1 Finding verification faults 4848
7.1.2 Checking feasibility . 5050
7.1.3 Timeouts and memory-outs 5050
7.1.4 Bugs . 5151

CONTENTS vii

7.2 Checking feasibility: --check-feasibility 5151
7.3 Options specific to static checking 5555

7.3.1 Controlling nullness . 5555
7.3.2 Choosing the solver used to check (--prover, --exec) . 5656
7.3.3 Choosing what to check (--method, --exclude) 5757
7.3.4 Control over what is checked 5959
7.3.5 Detail about the proof result 5959
7.3.6 Dividing up the proof: --split 6060
7.3.7 Controlling output . 6060
7.3.8 Options affecting the internal encoding 6060
7.3.9 Miscellaneous options 6161

8 OpenJML tools — Runtime Assertion Checking (RAC) 6363
8.1 Compiling classes with assertions 6363
8.2 Executing a RAC-compiled programs 6565
8.3 Options specific to runtime checking 6565

8.3.1 --show-not-executable 6565
8.3.2 --show-not-implemented 6565
8.3.3 --rac-show-source . 6565
8.3.4 --rac-check-assumptions 6666
8.3.5 --rac-java-checks . 6969
8.3.6 --rac-compile-to-java-assert 7070
8.3.7 --rac-precondition-entry 7171

8.4 Controlling how runtime assertion violations are reported . . . 7272
8.5 Exit code from a RAC-ed program 7676
8.6 RAC FAQs . 7777

8.6.1 Uncompiled fields and methods 7777
8.6.2 Non-executable or unimplemented features 7777
8.6.3 Try blocks too large . 7878

9 OpenJML extensions to JML 7979
9.1 Specification statements . 7979

9.1.1 check statement . 8080
9.1.2 show statement . 8181
9.1.3 havoc statement . 8181
9.1.4 halt statement . 8282
9.1.5 split statement . 8383
9.1.6 reachable statement 8989

CONTENTS viii

9.2 Modifiers . 9292
9.2.1 skipesc and skiprac . 9292
9.2.2 inline . 9393
9.2.3 query and secret . 9494
9.2.4 immutable . 9494
9.2.5 @Options . 9595
9.2.6 Experimental modifiers 9696

9.3 Expressions . 9696
9.3.1 \exception . 9696
9.3.2 Enhancements to conditional annotations: \key 9696

9.4 Enhancements to the maps clause 9797
9.5 Other topics to include, possibly 9797

10 Extending OpenJML 9999
10.1 Basic Concepts . 9999
10.2 Organization of OpenJDK and OpenJML implementation 9999
10.3 Adding command-line options 100100
10.4 Adding modifiers . 100100
10.5 Adding statement specification clauses 100100
10.6 Adding method specification clauses 100100
10.7 Adding class specification clauses 100100
10.8 Adding built-in types . 100100

11 Other OpenJML tools 101101
11.1 Inferring specifications . 101101

11.1.1 loop_modifies clauses 101101
11.2 Generating Documentation . 102102
11.3 Generating Specification File Skeletons 102102
11.4 Generating Unit Test framework 102102
11.5 Generating Test Cases . 102102
11.6 Symbolic Execution and Abstract Interpretation 102102

12 Limitations of OpenJML’s implementation of JML 103103
12.1 Soundness and Completeness 103103
12.2 Java and JML features not implemented in OpenJML —General

issues . 105105
12.2.1 Non-conservative defaults 105105
12.2.2 Unchecked assumptions 105105

CONTENTS ix

12.2.3 Verification of Java system libraries 105105
12.2.4 Java Errors . 106106
12.2.5 Non-sequential Java . 106106
12.2.6 Reflection . 106106
12.2.7 Class loading . 106106
12.2.8 Modules and annotation processing 106106

12.3 Java and JML features not implemented inOpenJML—Detailed
items . 106106
12.3.1 Clauses and expressions 107107
12.3.2 Termination . 107107
12.3.3 Redundancy . 107107
12.3.4 Arithmetic mode . 107107
12.3.5 Quantifiers . 108108
12.3.6 Static initialization . 108108
12.3.7 model import statement 108108
12.3.8 Model programs . 109109
12.3.9 Universe types . 109109

13 Contributing to OpenJML 110110
13.1 GitHub . 110110
13.2 User documentation . 111111
13.3 Maintaining the development wiki 112112
13.4 Issues . 112112
13.5 Creating and using a development environment 112112

13.5.1 Setup . 112112
13.5.2 Building OpenJML . 112112

13.6 Running tests . 113113
13.7 Deploying a release . 114114
13.8 Updating to newer versions of OpenJDK 114114

A Command-line options 116116

B Static and Runtime verification failure examples 121121
B.1 Tables . 122122
B.2 Examples . 126126
B.3 ArithmeticCastRange warning 126126
B.4 ArithmeticOperationRange warning 127127
B.5 Assert warning . 129129

CONTENTS x

B.6 Assignable warning . 129129
B.7 Assume warning (RAC only) . 130130
B.8 Constraint warning . 131131
B.9 ExceptionalPostcondition warning 132132
B.10 Initially warning . 133133
B.11 PossiblyNegativeIndex warning 134134
B.12 PossiblyNegativeSize warning 135135
B.13 PossiblyTooLargeIndex warning 136136
B.14 Postcondition warning . 137137
B.15 Precondition warning . 138138

Chapter 1

Introduction to JML and
OpenJML

The Java Modeling Language [2323] has been evolving since the beginning of the
project in 1997. The project as a whole includes the specification language def-
inition, research on language features for specification, development of tools
(such as OpenJML), application of JML and OpenJML to academic and industrial
problems, and encouraging their use in education.

JML is widely known and is the inspiration for analogous tools for languages
other than Java, such as ACSL [11] for C, ACSL++ [11] for C++, Spec# [55] for C#,
SPARK [33] for Ada, Stainless/Leon [2828, 66] for Scala, and Dafny[2626]. JML has
evolved considerably over the years, as Java has evolved. The JML Reference
Manual (2nd edition) [1313] is a substantial rewrite of the original Draft Refer-
ence Manual [2525] in order to include many new features (corresponding to Java
language features) and new developments in program specification and verifi-
cation.

Similarly, tools to support JML have evolved. The first tools relied on infras-
tructure that proved unmaintainable over time, as Java changed. Consequently,
when OpenJDK became available in 2006, the JML project adopted OpenJDK
as the compiler framework on which to build OpenJML. The first series of ver-
sions of OpenJML supported Java 8. In 2020, work was started to upgrade to Java
16ff. This endeavor required substantial internal reorganization because of the
introduction of modules as a Java language feature and the use of modules in

1

CHAPTER 1. INTRODUCTION TO JML AND OPENJML 2

the OpenJDK source code itself. The current version of OpenJML is easier to in-
stall and run than previous versions. The source code, releases and development
materials of OpenJML are hosted on GitHub, at https://github.com/OpenJMLhttps://github.com/OpenJML The
project as a whole is open source, with the OpenJML tool, like OpenJDK, publicly
available under the GPLv2 license.

There are three companion resources that you should be aware of in using JML
and OpenJML:

• The JavaModeling Language (JML) is a specification language for Java
programs. There is a reference manual for JML on-line at
https://www.openjml.org/documentation/JML_Reference_Manual.pdfhttps://www.openjml.org/documentation/JML_Reference_Manual.pdf.

• OpenJML is a tool for checking Java program implementations against their
JML specifications. This document, the user guide (reference manual) for
OpenJML, describes how to use the tool: installation, execution, command-
line options and the like. The most current version of this document is
on-line at
https://www.openjml.org/documentation/OpenJMLUserGuide.pdfhttps://www.openjml.org/documentation/OpenJMLUserGuide.pdf.

• A tutorial with lessons on using JML and OpenJML is on-line at
https:/openjml.org/tutorialhttps:/openjml.org/tutorial.

Additional resources are listed in §1.31.3.

The most significant, well-supported other tool for JML is the KeY tool —
http://www.key-project.org/http://www.key-project.org/

1.1 Why specify? Why check?
Software is hard to write correctly. In some applications, software can be safety-,
security- or life-critical. Many tools and processes have been promoted and tried
to create better software: testing frameworks, coverage measures, requirements
processes, careful development processes, agile development processes, fuzzing,
separate testing teams, and so on. Deductive verification (also known as for-
mal methods) is another such technique. It has the advantage of applying auto-
mated logic provers to check the consistency of machine-readable specifications
and software implementations. It has the disadvantage of requiring the work of
writing specifications in logical form along with the actual software implemen-
tation. Even just the added rigor and careful design work needed to write a

https://github.com/OpenJML
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://www.openjml.org/documentation/OpenJMLUserGuide.pdf
https:/openjml.org/tutorial
http://www.key-project.org/

CHAPTER 1. INTRODUCTION TO JML AND OPENJML 3

verifiable specification can improve the quality and correctness of the resulting
software artifacts. And as any compiler reminds an engineer, tools that check
our work invariably find errors to correct; the same is true for static specification
checking tools.

Deductive verification is a form of static analysis in that it checks software with-
out running it. However, most tools labeled as static analysis tools check things
like code style or identify bug patterns or bad-smelling code. Deductive verifica-
tion takes this much further by logically reasoning about what the code actually
does, to find input sets that lead to crashes or to violations of expected behav-
ior.

Although (static) deductive verification is more rigorous than (dynamic) testing
because verification uses automated logic tools and can validate all execution
paths (not just those for which there are test cases), it is not perfect: in the end,
the implementation and the specification both must reflect what the software
writer intended, and that requires careful manual review along with automated
tooling.

This document describes a tool, OpenJML, that performs deductive verification:
it checks that software written in Java is consistent with specifications written in
the Java Modeling Language (JML) [1313, 2323]. There are other tools that perform
the same task for other programming languages, such as ACSL for C [11], ACSL++
for C++ [11], Spec# [55] for C#, SPARK [33] for Ada, Leon/Stainless [2828] for Scala,
Dafny [2626] (for Dafny). There is also the KeY tool [2222] for Java.

1.2 Background on OpenJML
OpenJML is a tool for checking that the source code of a Java program is con-
sistent with specifications for that code written in the Java Modeling Language
(JML). The tool parses and type-checks the specifications and performs static or
run-time checking of the implementation code and the specifications. Because
OpenJML is built on the Java compiler, it is also able to do pure Java compilation,
which it uses to compile Java programs with extra runtime checks.

OpenJML, like verification tools for other languages, checks that the code that
implements a programming language method is consistent with the specifica-
tions for that method. To do this, OpenJML converts both the method imple-
mentation and the method specifications, along with the specifications of called

CHAPTER 1. INTRODUCTION TO JML AND OPENJML 4

methods, into a logical form. A separate tool, an SMT proof tool, is then auto-
matically invoked to see if there is any possible execution of the implementation
that would violate the specification. If there is, a counterexample to correct func-
tioning is reported to the tool user; if not, that method is considered verified. If
the source code + specifications for all the methods in the program are equiva-
lently verified (and verified to terminate), then the program as a whole can be
soundly considered to obey its specifications.

Tools like OpenJML can only check that the code and specifications are consis-
tent, that is, that the code behaves as the specifications state; it is possible that
the code and specifications, although consistent with each other, together are
incorrect when compared to the behavior that the software engineer actually
desires. Thus manual review that the formally stated specifications are com-
plete and match informal or natural language specifications is also necessary.
But even if the functional specifications are not complete, OpenJML, and tools
like it, can assure that no runtime exceptions will be generated by any permitted
execution of the program.

This list shows the functionality present or anticipated in OpenJML:

• parse and typecheck all of Java: Java is parsed through Java 17, as imple-
mented in OpenJDK

• parse JML specifications for Java programs: all of JML is parsed, as defined
by the JML Reference Manual v2

• typecheck all of JML, as described in this document and the JML Reference
Manual

• static checking that Java code is consistent with the JML specifications:
implemented

• runtime checking of JML specifications: still in progress for Java 17

• interacting with OpenJML programmatically from a host program: antici-
pated

• JML specifications included in javadoc documentation: planned

• JML specification inference: partially present with more in progress

• automatic test generation, based on JML specifications: planned

• symbolic execution of Java + JML programs: perhaps

CHAPTER 1. INTRODUCTION TO JML AND OPENJML 5

Current OpenJML is a command-line tool available on MacOS, Linux, and on
Windows under WSL.

OpenJMLwas constructed by extendingOpenJDK, the open source Java compiler,
to parse and include JML constructs in the abstract syntax trees representing the
Java program. Using OpenJDK was a design decision made when OpenJDK be-
came available. Precursor tools were built on other frameworks: EscJava2 on a
custom-built Java compiler; ISU tools on MultiJava. But both of these required
far too much developer effort just to keep up with changes in Java. Other frame-
works were considered, such as the Eclipse compiler. The choice of OpenJDK has
been validated by the strong and continuing support for OpenJDK as Java has
evolved.

1.3 Other resources
There are several useful resources related to JML and OpenJML:

• http://www.openjml.orghttp://www.openjml.org contains a set of on-line resources for OpenJML, in-
cluding the tutorial at http://www.openjml.org/tutorialhttp://www.openjml.org/tutorial

• The source code, releases, and issue list for OpenJML are maintained in
the GitHub project at http://www.github.com/OpenJMLhttp://www.github.com/OpenJML. This project also
contains related material such as the test suite, Java library specifications,
SMT solvers

• The OpenJML GitHub project wiki contains information relevant to devel-
oping OpenJML: https://github.com/OpenJML/OpenJML/wikihttps://github.com/OpenJML/OpenJML/wiki .

• http://www.jmlspecs.orghttp://www.jmlspecs.org is a web site containing information about JML, in-
cluding references to many publications, other tools, and links to various
groups using JML.

• https://www.openjml.org/documentation/OpenJMLUserGuide.pdfhttps://www.openjml.org/documentation/OpenJMLUserGuide.pdf is the most
current version of this document

• https://www.openjml.org/documentation/JML_Reference_Manual.pdfhttps://www.openjml.org/documentation/JML_Reference_Manual.pdf is the
most current version of the JML reference manual

• http://www.jmlspecs.org/OldReleases/jmlrefman.pdfhttp://www.jmlspecs.org/OldReleases/jmlrefman.pdf is the first version refer-
ence manual for JML [2525], which is being superseded by the document
mentioned in the previous bullet

http://www.openjml.org
http://www.openjml.org/tutorial
http://www.github.com/OpenJML
https://github.com/OpenJML/OpenJML/wiki
http://www.jmlspecs.org
https://www.openjml.org/documentation/OpenJMLUserGuide.pdf
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
http://www.jmlspecs.org/OldReleases/jmlrefman.pdf

CHAPTER 1. INTRODUCTION TO JML AND OPENJML 6

• the original JML tools and some other older (typically obsolete and no
longermaintained) JML projects are contained in the jmlspecs sourceforge
project at http://sourceforge.net/projects/jmlspecshttp://sourceforge.net/projects/jmlspecs.

There are also other tools thatmake use of JML. An incomplete list follows:

• The KeY tool — http://www.key-project.org/http://www.key-project.org/

• The previous generation of JML tools prior to OpenJML is available at
http://www.jmlspecs.org/download.shtmlhttp://www.jmlspecs.org/download.shtml.

• Other tools and projects listed at jmlspecs.orgjmlspecs.org.

• A previous sourceforge project for OpenJML has been discontinued in fa-
vor of the GitHub project.

Various mailing lists and discussion groups answer questions and debate JML
language syntax and semantics.

• The issues list at https://github.com/JavaModelingLanguage/RefMan/issueshttps://github.com/JavaModelingLanguage/RefMan/issues is
the place for discussions of JML syntax and semantics, including questions
about JML.

• The issues list at https://github.com/OpenJML/OpenJML/issueshttps://github.com/OpenJML/OpenJML/issues is the place for
discussion and questions about (and problems with) OpenJML.

1.4 Sources of Technology
The design and implementation ofOpenJML uses and extendsmany ideas present
in prior tools, such as ESC/Java[1515] and ESC/Java2[1212], and from discussions
with builders of tools such as Spec#[55], Boogie[44], Dafny[2626], Frama-C[1818],
KeY[2222], ACSL[11], and the Checker framework[1616]. It also benefits from many
advances in specification technology over the past couple of decades.

1.5 License
The OpenJML command-line tool is built from OpenJDK, which is licensed under
GPLv.2 (http://openjdk.java.net/legal/http://openjdk.java.net/legal/). HenceOpenJML is correspondingly licensed
as GPLv.2.

http://sourceforge.net/projects/jmlspecs
http://www.key-project.org/
http://www.jmlspecs.org/download.shtml
jmlspecs.org
https://github.com/JavaModelingLanguage/RefMan/issues
https://github.com/OpenJML/OpenJML/issues
http://openjdk.java.net/legal/

CHAPTER 1. INTRODUCTION TO JML AND OPENJML 7

The source code for OpenJML and any corresponding modifications made to
OpenJDK are available from a GitHub project: https://github.com/OpenJMLhttps://github.com/OpenJML.

1.6 Use of this document
This document is meant as a resource, in the spirit of most reference manuals,
rather than a text to be read straight through. The best approach is to work
through the on-line tutorial, with the JML and OpenJML reference manuals at
hand to provide detail when you need it. Once you understand the introductory
concepts, then more thorough reading of the reference manuals will alert you to
advanced features that you may need. The JML Reference Manual is the guide
to the definition of JML features. This document provides information on how
to use OpenJML to do static and runtime verification.

https://github.com/OpenJML

Chapter 2

Installation

2.1 Installing OpenJML
The OpenJML releases are kept in the OpenJML GitHub project; the installation
file is a simple .zip file. There are different builds for different platforms. Cur-
rently, MacOS, Linux (Ubuntu), and Windows on Cygwin are supported.

• Find the latest release of the highest number series, currently 17, at
https://github.com/openjml/openjml/releaseshttps://github.com/openjml/openjml/releases .

• Download the artifact for your platform. It is a .zip file.

• Create a clean folder of your choice and unzip the downloaded release into
it. The installation folder, call it OJ , will contain files and folders such as
openjml, tutorial, etc.

• The executable (a bash script) to run is OJ/openjml. Do not move this
file out of its location within the installation, as it uses its location to
find resources needed by OpenJML. You can write a script to delegate to
OJ/openjml, storing your script in some place on your PATH, if you like.
Or you can put OJ on your PATH. If you use a symbolic link to point to the
OJ/openjml executable, then you need the utility realpath in your en-
vironment; on MacOS you may need to install that explicitly, for example
using brew install coreutils.

The installation includes some demo and tutorial files, in the OJ/demo and

8

https://github.com/openjml/openjml/releases

CHAPTER 2. INSTALLATION 9

OJ/tutorial folders. The tutorial files are meant to be used with the on-line
tutorial at https://www.openjml.org/tutorialhttps://www.openjml.org/tutorial.

You can give OpenJML a quick trial by running the command
OJ/openjml --esc OJ/tutorial/T_ensures2.java

This command should give some error messages identifying some specification
errors in the T_ensures2.java file.

2.2 Organization of the installation
The installation contains the following, all within the installation folder (OJ):

• The executable openjml, which executes the OpenJML tool itself. It is a
replacement for javac.

• The executable openjml-java, which is a replacement for java: it exe-
cutes compiled Java programswith runtime-assertion-checks and includes
the runtime libraries necessary to do so.

• A Solvers-... folder containing executables for various SMT solvers
used by OpenJML.

• The library jmlruntime.jar, whichmust be includedwith a RAC-comp-
iled program when run with a conventional java.

• The specs folder, which contains specifications for Java library (JDK)
classes.

• The executable mac-setup, which turns off MacOS warnings about un-
known executables, if necessary

• The folder tutorial, which contains the files used in the JML/OpenJML
tutorial (https://www.openjml.org/tutorialhttps://www.openjml.org/tutorial).

• The folder demos, which contains other demo files.

• Copies of this OpenJML Users’ Guide and the JML Reference Manual v2
current at the time of the build release.

• The openjml.properties-template file. (cf. §2.32.3)

• The version-info.txt file, which contains the version number and the
github commit hashes of the version of the OpenJMLsources that make up

https://www.openjml.org/tutorial
https://www.openjml.org/tutorial

CHAPTER 2. INSTALLATION 10

this release.

• The jdk folder. which contains the actual build.

2.3 Local customization
OpenJML can be customized to your local environment as described in §4.34.3. Lo-
cal properties are specified in a openjml.properties file, stored in the same
directory as openjml or in the user’s home directory.

The openjml.properties file can be used to indicate default command-line
arguments and other local properties used by the tool. The installation includes
the file openjml.properties-template, which can be copied and custom-
ized to create openjml.properties.

SMT solvers are needed if you intend to use the static checking capability of
OpenJML (cf. §77). Recommended solvers are included in the installation pack-
age and are used by default. If you wish to use an alternate SMT solver, the
location of the solver can be specified on the command-line or, more easily, in
the openjml.properties file. For example, if the Z3 4.3 solver is located in
your system at absolute location <path>, then include the following line in the
openjml.properties file:

org.openjml.prover.z3_4_3=<path>

The details of the openjml.properties file are described in §4.34.3.

Chapter 3

The OpenJML Command-line
Tool

3.1 Command-line structure
OpenJML is a conventional command-line tool. In fact it acts much like the Java
compiler (javac), but with additional command-line options and capabilities:
the command-line consists of space-separated arguments, each of which is a
file-system path or an option or an option followed by the option’s value.

The options are all listed in Tables 5.15.1 and 5.25.2; the tables have links to where
the options are described in relevant sections throughout this document. The
general form of options and their values is described in §5.15.1. In short

• options begin with one or two hyphens

• options may be boolean-valued or have a (string) value

• later options in the command-line override earlier ones of the same name

• options and file paths may be freely intermixed on the command-line

3.2 Files and Folders
Besides options, the Java compiler only allows files to be listed on the command-
line. OpenJML allows listing folders as well, using the -dir and -dirs options (cf.

11

CHAPTER 3. THE OPENJML COMMAND-LINE TOOL 12

§5.45.4). A folder on the command-line is replaced by all the .jml files within that
folder and its subfolders, recursively.

As described later in §4.14.1, JML specifications for Java programs can be placed
either in the .java files themselves or in auxiliary .jml files. The format of
.jml files is defined by JML. OpenJML type-checks .jml files along with the
corresponding .java files or .class files, as described in §4.24.2).

3.3 Output
OpenJML sends all of its output to Java’s System.out. That output consists
of error messages, verification failure messages, warnings, and informational
output, such as progress indications. No output generallymeans success, though
it can mean a lengthy operation.

In addition, when operating as a compiler (e.g., for runtime assertion checking),
OpenJML produces class files in the same manner as javac would.

3.4 Exit values
A command-line tool running in a shell interpreter is expected to emit an integer
exit code on completion, indicating success or various kinds of failure. OpenJML
emits one of these values on exit:

• 0 (EXIT_OK) : successful operation, no errors, there may be warnings
• 1 (EXIT_ERROR) : normal operation, but with parsing or type-checking
errors

• 2 (EXIT_CMDERR) : an error in the formulation of the command-line, such
as invalid options

• 3 (EXIT_SYSERR) : a system error, such as out of memory
• 4 (EXIT_ABNORMAL) : a fatal error, such as a program crash or internal
inconsistency, caused by an internal bug

• 5 (EXIT_CANCELLED) : indicates exit because of user initiated cancellation
• 6 (EXIT_VERIFY) : indicates exit because of verification failures

The JML option –verify-exit allows the user to set an alternate value for the exit
code in the case of verification failures, such as 1 to count them the same as
errors, or 0 to count them the same as warnings).

CHAPTER 3. THE OPENJML COMMAND-LINE TOOL 13

The Java option -Werror indicates to treat all warnings as errors. The Java option
-nowarn suppresses warnings.

To elaborate the alternatives:

exit code exit code
without -Werror with -Werror

Java or JML errors 1, 2, 3, or 4 1, 2, 3, or 4
Java or JML warnings only 0 1
verification failures,
with or w/o warnings 6 6
no –verify-exit
verification failures
and no warnings and value of –verify-exit value of –verify-exit
–verify-exit not 0
verification failures and
with warnings or value of –verify-exit 1
–verify-exit=0

Table 3.1: Exit codes

3.5 Other aspects of the environment
§5.15.1 describes using command-line options and Java properties to control the
OpenJML tool. There are a few other aspects of the environment that do not
typically affect users but are listed here for completeness.

• OpenJML uses the OPENJML environment variable internally to record the
location of the installation folder

• the OJ environment variable is used to set debug settings. Various different
keywords turn on different categories of debug-style printing of internal
information. The actual content of any particular category and the names
of the categories themselves may change without warning, as this is in-
tended as purely debugging information.

3.5.0.0.1 Names hard-coded in JML

• .jml – suffix for JML files

CHAPTER 3. THE OPENJML COMMAND-LINE TOOL 14

• org.jmlspecs.annotation – Java package name for JML annotations

• org.jmlspecs.lang – package name for various important JML entities
(analogous to java.lang)

• org.jmlspecs... – general package prefix reserved for JML

3.5.0.0.2 Names hard-coded in OpenJML

• openjml – OpenJML executable in the installation folder

• openjml-java – Executable that combines java and the JML specifica-
tion libraries, in the installation folder

• jmlruntime.jar – The runtime-library neededwhenRAC-compiled pro-
grams are run using java (rather than openjml-java).

• openjml.properties – name of properties files for OpenJML

• org.openjml... – reserved prefix of property names used by OpenJML

Location of system library?, default prover, prover properties, java option, Jm-
lAssertionError

Chapter 4

OpenJML Concepts

4.1 Specifications in .java and .jml files
JML allows specifications for Java methods and classes to be placed either di-
rectly in the .java source file or in an auxiliary .jml file. The latter is required
if there is no source file, such as for a library, or if the source file may not be
modified, such as for a highly controlled project.

The format of a .jml file is very much like the corresponding .java file, with the
largest difference being that the Java implementations of methods are omitted in
the .jml file. Other differences are described in the JML ReferenceManual.

If .jml files are used, the question then is where are they located and how does
a tool find them. That process is described in the following section (§4.24.2).

4.2 Finding files and classes: class, source, and
specs paths

A key concept to understand is how class files, source files, and specification files
are found and used by the OpenJML tool. Java uses a classpath and a sourcepath
to locate compiled and source files; these are designated by the -classpath (or
-cp or --class-path) and -sourcepath (or --source-path) (Java) options. OpenJML
adds a specspath to find specification files, which is designated by the --specs-
path OpenJML option.

15

CHAPTER 4. OPENJML CONCEPTS 16

The files and folders listed on the command-line must be given as absolute paths
or paths relative to the current working directory. But these files may (most
assuredly will) contain references to other classses. The classpath and sourcepath
are used to resolve these references to classes as compiled .class or source
.java files..

Each of these paths is a sequence of file system paths identifying folders or jar
files. When Java tools are looking for compiled class files it will look in each of
these folders on the classpath in turn; similarly source code files are looked for in
the sourcepath. If a Java class has both a compiled and source version available,
the -Xprefer option determines which is used. (Issue 781: The -Xprefer option is
not yet working in OpenJML.)

Recall that the folders on the class and source paths represent the root of the
package for that class. That is, a class p.AA (in package p) must have a class file
at X/p/AA.class with X on the classpath or a source file Y/p/AA.java with
Y on the sourcepath. Specification files are named and stored in the file system
in the same way. The classpath may also contain jar files that contain the files
being sought.

The OpenJML tool also needs to find specification files. These can be either
.java or .jml files; if it is a .jml file, it will have the same file name (with a
.jml extension) and package as the Java class. Whenever a class, either source
or compiled, is read into OpenJML, the tool will look for a corresponding speci-
fication file on the specspath, which is set by the --specs-path option. First, the
full specspath is searched for the corresponding .jml file; if it is not found, then
the specspath is searched again for a corresponding .java file. If still not found
and the class was read from a source file on the command-line, then a .jml file
is looked for in the same folder as the .java file; if that is not found then the
.java file from the command-line is used. If no source or specification file is
found (that is, there is only a .class file, then a default set of specifications is
used, as defined by JML.

Most often, the user need not set all of these paths because there are convenient
defaults:

• classpath: The OpenJML classpath is set using one of these alternatives,
in priority order, with the system library always being added as well:

– the argument to the OpenJML command-line option -classpath
– the value of the Java property org.jmlspecs.openjml.classpath

CHAPTER 4. OPENJML CONCEPTS 17

– the value of the system environment variable CLASSPATH
– the default, which is the current working directory (plus the system

library)
• sourcepath: The OpenJML sourcepath is set using one of these alterna-
tives, in priority order:

– the argument of the OpenJML command-line option -sourcepath
– the value of the Java property org.jmlspecs.openjml.sourcepath
– the value of the OpenJML classpath (as determined above), without

the system libraries (which are all .class files)
• specspath: The OpenJML specifications path is set using one of these al-
ternatives, in priority order, with the locations of the system library spec-
ifications always appended:

– the argument of the OpenJML command-line option --specs-path
– the value of the Java property org.jmlspecs.openjml.specspath

– the value of the OpenJML sourcepath (as determined above)

Note that with no command-line options or Java properties set, the result is
simply that the system CLASSPATH (and absent that, the current working di-
rectory) is used for all of these paths. A common practice is to simply use a single
directory path, specified using the system CLASSPATH or on the command-line
using -cp, for all three paths.

Despite any settings of these paths, the Java system libraries are always effec-
tively included in the classpath; similarly, the JML library specifications that
are part of the OpenJML installation are automatically appended to the speci-
fications path. Placing an alternate set of specification files on the specspath
effectively replaces any built-in system library specifications.

OpenJML will warn about folders on the specspath that do not exist. The warning
can be suppressed with the option --no-check-specs-path.

A common working style has specifications written directly in .java files and
not using separate .jml files. In this case the user should be sure that the spec-
spath includes the sourcepath (which it does by default). Otherwise, OpenJML
will not find the .java file when looking for specifications and will then use
default specs, confusingly ignoring any specifications in the .java file.

There are a number of common scenarios:

• Java source file on the command-line with a corresponding JML file on
the specifications path: the JML file is used as the specification of the

CHAPTER 4. OPENJML CONCEPTS 18

Java class, with any JML content in the Java source file completely ignored.

• Java source file on the command-line with no corresponding JML file on
the specifications path: the Java source file is used as its own JML specifi-
cation; if it contains no JML content, then default specifications are used.

• Java class file on the classpath or in the Java system library (referred to by
files on the command-line) and a corresponding JML file on the specifica-
tions path: the JML file is used as the specifications for the class file. Any
corresponding source file on the sourcepath or command-line is ignored.
Check that the source file is ignored even with -Xprefer

• Java class file on the classpath or in the Java system library (referred to
by files on the command-line), no corresponding Java source file on the
sourcepath or command-line, and no corresponding JML file on the spec-
ifications path: the class file is used with default specifications.

There are two complicated scenarios:

• a source file on the command-line is not on the sourcepath and there is an
additional, different source file for the same class on the sourcepath

• two instances of a source file for the same class are on the sourcepath,
with the one later in the sourcepath appearing on the command-line

In these two scenarios, one .java file is used as the source code and another as
specification. If the two files define different methods or contain different spec-
ification text, OpenJML will likely issue error messages that may be confusing
until the user figures out that there are two distinct files. This situation is likely
an error and should be avoided.

4.3 OpenJML Options, Java properties and the
openjml.properties file

The OpenJML tool is controlled by a variety of options, just as many other tools
are. The general rules about options are presented in §5.15.1 and the implemented
options are described in detail throughout this document; here we describe how
the options can be set using properties rather than on the command-line.

CHAPTER 4. OPENJML CONCEPTS 19

OpenJML options interact with Java properties. Java properties can be used to set
OpenJML options without needing to state them on the command-line each time.
Java properties are typical key-value pairs of two strings. Values for boolean
options can be stated using the strings true and false. A typical use of properties
in OpenJML is to record characteristics of the local environment that vary among
different users or different installations. But they can also be used to set initial
values of options, so they do not need to be set on the command-line.

OpenJML loads properties from specified files placed in several locations. It loads
the properties it finds in each of these, in order, so later definitions supplant
earlier ones.

• Properties defined by environment variables as described below
• A openjml.properties file in the OpenJML installation directory, if any
• A openjml.properties file in the user’s home directory (the value of
the Java property user.home), if any

• A openjml.properties file in the current working directory (the value
of the Java property user.dir), if any

• Properties defined by environment variables, as described below, if any.

Then the value of any property whose name has the form
org.openjml.option.option is used to set the value of the option (leaving off
the initial 1 or 2 hyphens). And then, finally, the options given on the command-
line override any previously given values. These means of using properties apply
only to OpenJML options, not to OpenJDK options. Note also that some command-
line options are aliases for others. For example, --esc is an alias for --command=esc.
In this case the alias (i.e., --escmay not be set by a property; only the true option,
in this case --command.

The format of a .properties file is defined by Java.11 These are simplified
statements of the rules:

• Lines that are all white space or whose first non-whitespace character is
a # or ! are comment lines

• Non-comment lines have the form key=value or key:value
• Whitespace is allowed before the key and between the key and the = or :
character and between the = or : character and the value

• The value begins with the first non-whitespace character after the = or :
character and ends with the line termination. This means that the value

1https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load(java.io.Reader)https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load(java.io.Reader)

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load(java.io.Reader)

CHAPTER 4. OPENJML CONCEPTS 20

may include both embedded and trailing white space. (The presence of
trailing white space in key-value pairs can be a difficult-to-spot bug.)

The properties that are currently recognized are these:

• org.openjml.defaultProver - the value is the name of the prover (cf.
§4.44.4) to use by default

• org.openjml.prover.name, where name is the name of a prover, and
the value is the file system path to the executable to be invoked for that
prover (cf. §4.44.4)

• org.openjml.option.option, where option is the name of an OpenJML
option (without any leading hyphens)

The format of a shell environment variable is (unfortunately) slightly different,
because such variables may not contain periods or hyphens. So to set an option
named --opt to a value val, define the environment variable
OPENJML_opt=val, where any hyphens in opt are replaced by underscores.

For example, if you are tired of always writing --esc when invoking openjml,
you can change the default for the --command option, which is usually check,
to esc by one of these:

• OPENJML_command=esc openjml tutorial/T_ensures2.java

— temporary change just for this line

• export OPENJML_command=esc; openjml tutorial/T_ensures2.java

— change applies to the remainder of the shell

• put org.openjml.option.command=esc in a openjml.properties
file in your home directory (or the current working directory, or the in-
stallation directory) — change applies until the line is removed from the
openjml.properties file.

TheOpenJML distribution includes a file that contains stubs for all the recognized
options: openjml-template.properties . You may copy that file, rename it
as openjml.properties, and edit it to reflect your system and personal con-
figuration, and put it in one of the designated locations. (If you are an OpenJML
developer, take care not to commit your local openjml.properties file into
the OpenJML shared GitHub repository.)

CHAPTER 4. OPENJML CONCEPTS 21

4.4 SMT provers
The static checking capability of OpenJML uses SMT solvers to discharge proof
obligations stemming from the specifications and implementation of a program.
The SMT solvers are not part of OpenJML itself. However, a selection of solvers
is shipped with an OpenJML release and one of these is used by default.

If you want to use a different solver, you need to set these properties:

• org.openjml.defaultProver to give the name of a prover (e.g., z3-4.3)

• org.openjml.prover.name, where name is the name of a prover, and
the value is the file system path to the executable to be invoked for that
prover
(e.g., org.openjml.prover.z3-4.3=...)

Different solvers have different properties. They support different SMT logics;
for example, some do not support quantifiers, others may not support real arith-
metic. They certainly also have different runtime and memory performance and
different success rates at finding answers to proof obligations.

Currently, OpenJMLworks bestwith Z3 v4.3.1, which is shippedwithOpen-
JML, and is the default solver.

4.5 Conditional JMLannotations (-keys option)
JML defines a mechanism for controlling which JML annotations are used by
tools (see the JML Reference Manual for more detail):

• Syntactically, a JML annotation comment can be enabled or disabled by
positive or negative keys, as in //+key@ and //-key@, where key is a
Java identifier. See the JML Reference Manual for details.

This conditional annotation relies on the key being defined or not. OpenJML de-
fines keys using the -keys option. The value of this option is a comma-separated
list of identifiers, each of which is then a defined key. Like other options, a prop-
erty (org.openjml.option.keys) can be defined to avoid adding options to
the command-line.

In OpenJML,

• the key OPENJML is enabled by default in the OpenJML tool

CHAPTER 4. OPENJML CONCEPTS 22

• the keys ESC and RAC are enabled when the respective OpenJML tools are
being executed

• the key DEBUG is reserved but is disabled by default

• the key KEY is reserved for the use of the KeY ([2222]) tool and is disabled
by default in OpenJML

• all other keys are disabled by default in OpenJML

Keys are case-sensitive. However reusing differently-cased versions of keys for
different purposes is discouraged, including differently cased versions of the
above. For example, the identifier KeY should be considered a reserved key along
with KEY.

Two simple uses are these:

1 //+OPENJML@ requires x;
2 //-RAC@ ensures y;

The first line, with the + sign, is ignored in all situations except when OPENJML
is defined as a key. The second line, with the - sign, is always enabled except
when RAC is defined as a key. This second use case is quite commonly used to
exclude from runtime-checking JML features that have a lengthy runtime or are
non-executable.

4.6 Annotations and the runtime library
JML optionally uses Java annotations as introduced in Java 1.6 as an alternate
way to specify modifiers. For example, a method can be declared pure either
with the /*@ pure */ JML modifier or the @Pure Java annotation.22 JML-
defined annotation classes are in the package org.jmlspecs.annotation.
In order for files using these annotations to be processed by Java, the annota-
tion classes must be on the classpath (just like any other annotation classes).
They may also be required when a compiled Java program that uses such an-
notations is executed. In addition, running a program that has JML runtime

2There are many annotations defined that are not used or not implemented. For example, a
@Requires annotation was introduced as an experiment in writing preconditions with annota-
tions, but not subsequently adopted into JML.

CHAPTER 4. OPENJML CONCEPTS 23

assertion checks compiled in will require the presence of runtime classes that
define utility functions used by the assertion checking code.

Both the annotation classes and the runtime checking classes are provided in
a library named jmlruntime.jar. The distribution of OpenJML contains this
library.

When the openjml and openjml-java executables are used to compile and
run a Java program, both the annotations and the runtime utilities are auto-
matically available, as they are built-in to those tools. It is possible to supplant
the OpenJML-supplied versions of these classes by putting an alternative on the
classpath.

If instead the conventional java tool is used to run a RAC-compiled executable,
then the jmlruntime.jar library must be added to the classpath. An alternate
library that provides at least the same capabilities may be used instead.

4.7 Defaults for binary classes
If there is no source file and no specification file for a class, then JML-defined de-
fault specifications are used. These are discussed in the JML Reference Manual
(https://www.openjml.org/documentation/JML_Reference_Manual.pdfhttps://www.openjml.org/documentation/JML_Reference_Manual.pdf).

In addition, in some situations Java automatically generatesmethods and classes.
such as default constructors and methods for user-defined enum and record

classes. JML defines specifications for these cases also.

4.8 Redundancy in JML and OpenJML
JML has a few features that explicitly allow redundancy. Many keywords, such
as ensures, have an alternate version, ensures_redundantly. The goal is to be
able to state an equivalent assertion but in an alternate form that may be more
understandable or provable. Similarly, the implies_that and for_example spec-
ification cases are not intended to state new behavior specifications, but rather
to state implications or examples of behavior already given.

Although the semantics of these redundant specifications is that they be prov-
able from other specifications, OpenJML currently

https://www.openjml.org/documentation/JML_Reference_Manual.pdf

CHAPTER 4. OPENJML CONCEPTS 24

• treats the redundant keywords precisely like their non-redundant coun-
terparts and

• ignores the implies_that and for_example specification cases.

4.9 Nullness and non-nullness of references

4.9.1 Background on non-null annotations and types
Whether or not references (or pointers) are null is a key source of program-
ming faults in many programming languages. And an Optional type just hides
the question in a different construct. So much so that newer languages (e.g.,
Dafny, Kotlin) are building in the concept of non-null types. Java itself has no
provision for non-null types, but various tools (e.g., Checker framework) have
implemented Java annotations (@NonNull, @Nullable) to impose a statically-
checkable, non-null type framework on top of Java.

JML has had from the beginning (before Java annotations were added to the
Java language) the non_null and nullable modifiers, which indicated which
variable, field, formal parameter, and method return values were or were not
allowed to be null; tools supporting JML have always implemented verification
checks of these restrictions.

A further development is the introduction of type annotations in Java. Now not
only declarations, but all uses of a type name can be annotated — types used in
declarations, in casts, in type parameters—anywhere a reference type name is
permitted. Combined with the @NonNull and @Nullable annotations now be-
ing defined as type annotations, JML has a true non-null subtype for each refer-
ence type. There is one difficulty in that there are multiple packages that define
these annotations: JML has them in org.jmlspecs.annotation, the Checker
framework has them in org.checkerframework.checker.nullness.qual,
the javax additions in javax.annotation.Nonnull. In fact, the Checker
framework documents a long list of such annotations:
(https://checkerframework.org/manual/#nullness-related-workhttps://checkerframework.org/manual/#nullness-related-work)

For now, OpenJML recognizes the JML annotations and has a future goal of
recognizing the more important of other annotations.

The formal details of annotations, including type annotations, are in the Java
Language Specification:

https://checkerframework.org/manual/#nullness-related-work

CHAPTER 4. OPENJML CONCEPTS 25

https://docs.oracle.com/javase/specs/jls/se17/html/jls-9.html#jls-9.7.4https://docs.oracle.com/javase/specs/jls/se17/html/jls-9.html#jls-9.7.4
A more understandable discussion is found in JSR-308:

https://checkerframework.org/jsr308/specification/java-annotation-design.htmlhttps://checkerframework.org/jsr308/specification/java-annotation-design.html

4.9.2 JML features for nullness
JML adopted the semantics that reference types are non-null by default, even
though that is not the Java default. To remain sound, the default return values
of unspecified methods is still possibly-null; but the JML default for user-written
code and specifications is that references are non-null. This policy helps identify
null reference problems early and requires explicit specification that a reference
may be null. Resolve the default for local variables.

Nullness defaults are determined as follows:

• A class may be marked with one of the modifiers
non_null_by_default or nullable_by_default

or the annotations
@NonNullByDefault or @NullableByDefault

to indicate whether type names in the class are non-null or nullable by de-
fault.

• A class not so marked takes its default from the modifiers or annotations
on the innermost enclosing class that has such a modifier or annotation.

• In the absence of a marked enclosing class, the default is taken from the
command-line options (or properties) — either the option --nonnull-by-
default or --nullable-by-default

• And in the absence of any command-line option, the default is the JML
default: non-null by default.

Then, within a class, any use of a type name is non-null or nullable accord-
ing to the default for that class, unless the type name is explicitly marked with
one of the modifiers non_null or nullable or the annotations @NonNull or
@Nullable.

In JML the use of non_null and @NonNull are equivalent, as are nullable and
@Nullable.

The default rule for binaries is slightly different, as described in §4.9.44.9.4.

https://docs.oracle.com/javase/specs/jls/se17/html/jls-9.html#jls-9.7.4
https://checkerframework.org/jsr308/specification/java-annotation-design.html

CHAPTER 4. OPENJML CONCEPTS 26

4.9.3 Nullness annotations for array declarations
Type annotations in Java are a bit complicated and less intuitive for array dec-
larations, and somewhat backwards incompatible. Previously

/*@ non_null*/ String[] x;

meant that x was non-null and said nothing about the values in the array of
Strings that x is a reference to.

With Java’s type annotations, presuming for these examples that the default is
nullable,

@NonNull String[] x;

means that x is a reference to a possibly-null array of non-null Strings.
String @NonNull [] x;

means that x is a reference to a non-null array of possibly-null String values.
And

@NonNull String @NonNull [] x;

means x is a non-null reference to an array of non-null String values. For multi-
dimensional arrays: In

String @NonNull [] [] x;

x is a non-null array of possibly null arrays of possibly-null Strings. In
String [] @NonNull [] x;

x is a possibly-null array of non-null arrays of possibly-null Strings. In
@NonNull String [] [] x;

x is a possibly-null array of possibly-null arrays of non-null Strings.

In the examples above, if the default is non-null rather than nullable, then all
the levels of the type declaration are non-null except where explicitly annotated
as @Nullable.

Settle default for array elements

Make sure of agreement on all the above with the JML RM

4.9.4 Nullness for binary classes
For binary (.class) files with no source code and no explicit specifications, a de-
fault set of specifications are presumed. These are by necessity (for soundness)
presumed to be very conservative and slightly different than the defaults when
source code is present. In this case,

• arguments to a method are presumed to be non-null

CHAPTER 4. OPENJML CONCEPTS 27

• return values are presumed to be possibly null

• any available fields are presumed to be possibly null

If these are too conservative, it is a simple matter to supply a .jml file that ex-
presses the method’s behavior more accurately. For soundness sake, however,
the specification should still be conservatively underspecified where the behav-
ior is not precisely known.

4.10 Arithmetic modes

4.10.1 Integer arithmetic
JML defines three arithmetic modes for integer arithmetic: java, safe, and big-
int.

• In java math mode, all integer computations (negation, addition, subtrac-
tion, multiplication, division, modulo, casting, shifting) are performed pre-
cisely as in Java, in 2’s complement fixed-bit-width arithmetic (either 32
or 64 bits). No warnings are given for overflow.

• In safe math mode, all operations still produce the same result as in Java,
but OpenJML will issue an verification error if it cannot prove that over-
flows or underflows or shifts with a right-hand operand out of range do
not occur. This is the JML default for analyzing Java code.

• In bigint math mode, all operations are performed using unlimited math-
ematical integers. This is the default for arithmetic in specifications.

The math mode for interpretation of Java code is set as a command-line op-
tion: either --code-math=java or --code-math=safe. OpenJML does not imple-
ment --code-math=bigint for Java code. The math mode for Java code can also
be set using the modifiers code_java_math and code_safe_math on specific
methods (overriding the global setting) or on a class or interface, applying to
all methods in that class or interface (or in syntactically nested classes or inter-
faces).

The mathmode for interpretation of JML specifications is set as a command-line
option: either --spec-math=java or --spec-math=safe or --spec-math=bigint. The
math mode for JML specifications can also be set using the modifiers
spec_java_math, spec_safe_math and spec_bigint_math on specificmethods

CHAPTER 4. OPENJML CONCEPTS 28

(overriding the global setting) or on a class or interface, applying to all methods
in that class or interface (or in syntactically nested classes or interfaces).

The checks performed for arithmetic overflow are soft assertion checks. That
is, a warning is given (if in safe mode) that an overflow might happen, but the
result of the operation is the same in any case and no assumption about the
future program state is assumed. (cf. the discussion of hard and soft assertions
in §9.1.19.1.1). For example, in

1 //@ requires i >= 0 && j >= 0;
2 void m(int i, int j) {
3 int k = i + j;
4 //@ assert i + j <= Integer.MAX_VALUE;
5 }

verification errors will be issued for both line 3, where an overflowmight happen,
and line 4, because no constraints have been put on i and j by the previous
failure.

Arithmetic checks can bemade hardwith the command-line option --arithmetic-
failure=hard. With this option enabled, the failure on line 3 adds the assumption
that the overflow did not happen, that is, that i + j <= Integer.MAX_VALUE,
and then the assert statement on line 4 passes.

4.10.2 Floating point arithmetic
Not yet implemented. It is expected that there will be alternate modes for floating-
point arithmetic as well — performing all computations in precise IEEE floating
point or using real arithmetic.

4.11 Integers andbit-vectors (--esc-bv option)
In Java (and other programming languages), integer values are sometimes used
not as numbers but as sequences of bits. Perhaps each bit denotes some on or
off value, with all of the bits packed into a single long or int or short or byte
value. SMT solvers can reason both about numbers and about bit-vectors, but
with some important caveats.

• A particular value is either a bit-vector or a number and cannot be con-
verted from one to the other.

CHAPTER 4. OPENJML CONCEPTS 29

• Bit-vectors support all the arithmetic operations that numbers do, but
numbers do not support bit-wise and, or, exclusive-or or shift operations.
In some limited cases these operations can be emulated on numbers; for
example, shifting by a literal integer amount can be replaced by multipli-
cation or division.

• Proofs involving bit-vectors typically take much longer than on numbers.

Because of this last point, OpenJML encodes a method for SMT using num-
bers whenever possible and uses bit-vectors only when necessary because of
the choice of operations.

The --esc-bv command-line option controls the choice of using bit-vectors or not.
Its values are

• --esc-bv=true to force using bit-vectors,

• --esc-bv=false to forbid it, and

• --esc-bv=auto (the default) to allow OpenJML to make the determination
as described above.

Current OpenJML translates all integer values in a method as bit-vectors or all
as numbers. This is overly constrained. SMT allows some quantities to be rep-
resented one way and some the other. Implementing such a mix is planned but
not yet completed.

4.11.1 Specification inference
Precise specifications can be verbose and writing them can be time-consuming.
If would be a productivity enhancement if straightforward specifications could
be inferred automatically. There is a danger: specifications inferred from source
code will likely have the same errors as the source code, and thus should be
carefully reviewed.

JML itself does not define any inference. As a language it just defines the mean-
ing of specifications and is mute on the question of the origin of those specifi-
cations. That is, it does not define any situations where specifications will be
omitted because they will be accurately inferred. It only defines conservative
defaults for missing specifications. It is up to tools like OpenJML to improve
usability by inferring specifications where possible and appropriate.

CHAPTER 4. OPENJML CONCEPTS 30

This is a substantial topic and is the subject of §11.111.1.

Chapter 5

OpenJML Options

There are many options that control or modify the behavior of OpenJML. Some of
these are inherited from the OpenJDK compiler on which OpenJML is based. The
general behavior of options and properties is described in §4.34.3. All of the options
are listed alphabetically in Tables 5.15.1 and 5.25.2. The options are then described
in following subsections in functionally similar groupings or in other chapters
relevant to their functionality.

Note that OpenJDK is migrating its options to generally use long-form names
starting with two hyphens (--) and using lower-case, hyphen-separated words
(dash-case). OpenJML traditionally used single-hyphen option names to match
javac, with no single-letter abbreviations. ojml has now added and prefers the
two-hyphen, dash-case spelling of its options, with the old spellings still sup-
ported as aliases.

Java (OpenJDK) options that are not relevant to OpenJML are only listed for com-
pleteness but not discussed here. See Java’s documentation for more informa-
tion on those [2121].

For convenience these tables are replicated in the Appendix (Tables A.1A.1 and
A.2A.2).

31

CHAPTER 5. OPENJML OPTIONS 32

Options inherited from OpenJDK
See the Java documentation for more detail

@<filename> read options from a file. This is implemented only for Java op-
tions, not OpenJML options

-Akey options to pass to annotation processors
--add-modules <modulelist> [§5.105.10] see Java documentation re modules
-bootclasspath <path> See Java documentation
--boot-class-path <path>
-cp <path>
-classpath <path> [§4.24.2] location of input class files
--classpath <path>
-d <directory> location of output class files
-deprecation warn about use of deprecated features
--enable-preview enables preview language features
-encoding <encoding> character encoding used by source files
-endorsedirs <dirs> see Java documentation
-extdirs <dirs> see Java documentation
-g generate debugging information
-h <directory> location of generated header files
-?
-help [§5.55.5] output (Java and JML) help information
--help
--help-extra [§5.55.5] help about extra options
-implicit whether or not to generate class files for implicitly referenced

classes
-J<flag> flags for the runtime system
--limit-modules <modulelist> [§5.105.10] see Java documentation re modules
-m <modulelist> [§5.105.10] see Java documentation re modules
--module <modulelist>
--module-path <path> [§5.105.10] see Java documentation re modules
--module-source-path <path> [§5.105.10] see Java documentation re modules
--module-version <version> [§5.105.10] see Java documentation re modules
-nowarn [§5.55.5] show only errors, no warnings
-p <path> [§5.105.10] like --module-path see Java documentation re modules
-parameters see Java documentation
-proc see Java documentation re annotation processing
-processor <classes> see Java documentation re annotation processing
--processor-module-path <path> see Java documentation re annotation processing
-processorpath <path> where to find annotation processors
--processor-path <path>
-profile see Java documentation
--release <release> target release for compilation
-s <directory> location of output source files
-source <release> the Java version of source files

CHAPTER 5. OPENJML OPTIONS 33

Options inherited from OpenJDK (cont.)
See the Java documentation for more detail

--source <release>
-sourcepath <path> [§4.24.2] location of source files
--source-path <path>
--system <jdk> see Java documentation
-target <release> the Java version of the output class files
--target <release>
--upgrade-module-path <path> [§5.105.10] see Java documentation re modules
-verbose [§5.55.5] verbose output for Java compiler only, not OpenJML

-version [§5.55.5] output (OpenJML) version
--version
-X [§5.55.5]Java non-standard extensions
-Werror [§3.43.4]treat warnings as errors

Table 5.1: OpenJML options inherited from Java. See the text for more detail on
each option.

Options specific to JML
Options indicated with [-]-<name> may be spelled
with either one or two hyphens, with two preferred

--arithmetic-failure <mode> [§4.10.14.10.1] sets the mode for arithmetic checks: hard, soft (the
default) or quiet

[-]-check [§5.35.3] typecheck only (--command=check)
--check-accessible [§7.3.4.17.3.4.1] whether to check accessible clauses (default: true)
-checkAccessible
[-]-check-feasibility <list> [§7.27.2] kinds of feasibility to check
-checkFeasibility <list>
[-]-check-specs-path [§4.24.2] warn about non-existent specs path entries
-checkSpecsPath
[-]-code-math <mode> [§4.104.10] arithmetic mode for Java code (default: safe)
[-]-command <action> [§5.35.3] which action to do: check esc rac compile, default

is check
[-]-compile [§5.35.3] typecheck JML but compile just the Java code

(--command=compile)
[-]-counterexample [§7.3.57.3.5] show a counterexample for failed static checks
-ce
[-]-defaults <list> enables various default behaviors TBD
[-]-determinism EXPERIMENTAL: ???
--dir <dir> [§5.45.4] argument is a folder or file; enables processing all .java

files in a folder
--dirs [§5.45.4] subsequent arguments are folders or files (until an argu-

ment is an option)

CHAPTER 5. OPENJML OPTIONS 34

Options specific to JML (cont.)
Options indicated with [-]-<name> may be spelled
with either one or two hyphens, with two preferred

[-]-esc [§5.35.3] do static checking (--command=esc)
--esc-bv [§4.114.11] whether to use bit-vector arithmetic (default: auto)
-escBV
--esc-max-warnings <n> [§7.3.57.3.5] max number of verification errors to report in -esc
-escMaxWarnings
–esc-max-warnings-path TBD? KEEP THIS?
-escMaxWarningsPath
[-]-exec <file> [§7.3.27.3.2] file path to prover executable
[-]-exclude <patterns> [§7.3.37.3.3] paths to exclude from verification
[-]-extensions <classes> [§1010] comma-separated list of extensions classes and packages
[-]-inline-function-literal EXPERIMENTAL ?
-java [§5.35.3] use the native OpenJDK tool
-jml [§5.35.3] process JML constructs
-jmldebug [§5.55.5] very verbose output (includes -progress)

(--verboseness=4)
[-]-jmltesting changes some behavior for testing (default: false)
[-]-jmlverbose [§5.55.5] JML-specific verbose output (--verboseness=3)
[-]-keys [§4.54.5] define keys for optional annotations
[-]-lang <language> [§99] the JML variant to use
[-]-logic <name> [§7.3.27.3.2] name of SMT logic to use (default: ALL)
[-]-method <patterns> [§7.3.37.3.3] methods to include in verification
--nonnull-by-default [§5.45.4] values are not null by default
-nonnullByDefault
[-]-normal [§5.55.5] only outputs errors; no pother progress information

(--verboseness=1)
--nullable-by-default [§5.45.4] values may be null by default
-nullableByDefault
[-]-os-name <name> [§7.3.27.3.2] Operating System name to use in selecting prover (de-

fault: "" (auto), or one of macos, linux, windows)
[-]-progress [§5.55.5] outputs errors, warnings, progress and summary infor-

mation (--verboseness=2)
[-]-properties <file> [§4.34.3] property file to read (value required)
[-]-prover <name> [§7.3.27.3.2] prover to use (default: z3-4.3)
-purityCheck [§5.45.4] check for purity
[-]-quiet [§5.55.5] no informational output (--verboseness=0)
[-]-rac [§5.35.3] compile runtime assertion checks (--command=rac)
--rac-check-assumptions [§8.3.48.3.4] enables (default on) checking assume statements
-racCheckAssumptions as if they were asserts
--rac-compile-to-java-assert [§8.3.68.3.6] compile RAC checks using Java asserts
-racCompileToJavaAssert
--rac-java-checks [§8.3.58.3.5] enables (default on) performing JML checking

CHAPTER 5. OPENJML OPTIONS 35

Options specific to JML (cont.)
Options indicated with [-]-<name> may be spelled
with either one or two hyphens, with two preferred

-racJavaChecks of violated Java features
–rac-missing-model-field-rep-
source

TBD

-racMissingModelFieldRepSource
–rac-missing-model-field-rep-
binary

TBD

-racMissingModelFieldRepBinary
--rac-precondition-entry TBD
-racPreconditionEntry
--rac-show-source [§8.3.38.3.3] includes source location in RAC assertion failure mes-

sages
-racShowSource
[-]-require-white-space [§6.16.1] whether white space is required after an @ (default:

false)
[-]-show [§5.55.5] prints the details of source transformation (default:

false)
--show-not-executable [§8.3.18.3.1] warn about features not executable, in --rac operations
-showNotExecutable (default: TBD)
--show-not-implemented [§5.45.4] warn about features not implemented
-showNotImplemented (default: TBD)
--silent [§5.55.5] turns off all (error, warning, informational) output ex-

cept the error code (--verboseness=-1)
--show-skipped [§7.3.37.3.3] showmethodswhose proofs are skipped (default: true)
-skipped
--smt filename [§7.3.97.3.9] where to write generated SMT files (for off-line use or

inspection)
[-]-solver-seed [§7.3.97.3.9] seed to pass on to the SMT solver (default: 0 - no seed)
[-]-spec-math <mode> [§4.104.10] arithmetic mode for specifications (default: bigint)
--specs-path [§4.24.2] location of specs files
-specspath
[-]-split [§9.1.5.69.1.5.6] splits proof of method into sections
--stop-if-parse-errors [§6.16.1] stop if there are any parse errors
-stopIfParseErrors (don’t do type checking or verification attempts)
-staticInitWarning TBD
[-]-subexpressions [§7.3.57.3.5] show subexpression detail for failed static checks (de-

fault: false)
[-]-timeout <seconds [§7.3.97.3.9] timeout for individual prover attempts (default: TBD)
[-]-trace [§7.3.57.3.5] show a trace for failed static checks (default: false)
[-]-triggers enable SMT triggers (default: true)
-typeQuants TBD

CHAPTER 5. OPENJML OPTIONS 36

Options specific to JML (cont.)
Options indicated with [-]-<name> may be spelled
with either one or two hyphens, with two preferred

[-]-verboseness <n> [§5.55.5] level of verboseness (0=quiet .. 4=jmldebug) (default: 1,
-normal)

[-]-verify-exit <n> [§7.3.97.3.9] exit code for verification errors (default: 6)
[-]-warn <list> [§5.85.8] comma-separated list of warning keys (default: no keys)

Table 5.2: OpenJML options. See the text for more detail on each option.

CHAPTER 5. OPENJML OPTIONS 37

5.1 General rules about options
• The command-line consists of the path to the executable followed by space-
separated arguments. Arguments that contain spaces should be enclosed
in double-quotes. The shell interpreter and the OS being run will dictate
other properties of the command-line, such as when variables are substi-
tuted, when filename expansion is performed, and how file-system paths
are written.

• The arguments themselves are either (relative or absolute) paths to files
or options. An option may by followed by a value (if it requires a value),
which is then either the next argument in the command-line or combined
with the option name by an = character. Relative paths are relative with
respect to the current working directory (as given by pwd, for example).

• Options begin with an initial hyphen character. It is nowmore common to
have long option names begin with two hyphens and abbreviated names
begin with one (as in --help and -h) and some javac options do have alter-
native double-hyphen version. OpenJML has also introduced two-hyphen
option names, though most older one-hyphen names are still retained
(though discouraged), as shown in Table 5.25.2.

• If an option appears more than once, then the values designated by later
(to the right) appearances override earlier appearances; options that are
not listed have default values.

• Default values can be set by properties and environment variables (cf.
§4.34.3), otherwise a built-in value is used.

• Options may have boolean or string values, though string values may be
constrained to a specific format, such as a numeral.

• A boolean option (e.g. --xyz) is set to true by either
--xyz or --xyz=true,

and set to false by either
--no-xyz or --xyz=false;

--xyz= resets the option to its built-in default.

• A string option is required to have a value, which is specified either by
--xyz=value (preferably for JML options) or --xyz value (without an = con-
nector). Only some double-hyphen Java options may use the = form. The

CHAPTER 5. OPENJML OPTIONS 38

form --xyz= resets the option to its built-in default.

5.2 Options: Operational modes
These operational modes are mutually exclusive.

• -jml (default) : use the OpenJML implementation to process the listed files,
including embedded JML comments and any corresponding .jml files

• -no-jml: uses the OpenJML implementation to type-check and possibly
compile the listed files, but ignores all JML annotations in those files

• -java: processes the command-line options and files using only OpenJDK
functionality. No OpenJML functionality is invoked and no other OpenJML
options are allowed. It must be the first option.

5.3 Options: JML tools
The following mutually exclusive options determine which OpenJML tool is ap-
plied to the input files. They presume that the -jml mode is in effect.

• --command <tool> : initiates the given function; the value of <tool> may
be one of check, esc, rac, compile, doc. The default is to use the OpenJML
tool to do only typechecking of Java and JML in the source files (check).

• --check : causes OpenJML to do only type-checking of the Java and JML in
the input files (alias for --command=check)

• --compile : causes OpenJML to do JML type-checking (as with --check), but
then compiles the Java code without any runtime-checking (a rarely used
option) (alias for --command=compile)

• --esc : causes OpenJML to do (type-checking and) static checking of the
JML specifications against the implementations in the input files (alias for
--command=esc)

• --rac : compiles the given Java files as OpenJDK would do, but with JML
checks included for checking at runtime (alias for --command=rac)

• --doc : executes javadoc but adds JML specifications into the javadoc out-
put files (alias for --command=doc) Not yet implemented.

CHAPTER 5. OPENJML OPTIONS 39

5.4 Options: OpenJML options applicable to all
OpenJML operational modes

• --dir <folder> : abbreviation for listing on the command-line all of the
.java files in the given folder and its subfolders (recursively); if the argu-
ment is a file, use it as is. A warning is issued if the given path does not
exist.

• --dirs : treat all subsequent command-line arguments as if each were the
argument to --dir, until reaching an argument that begins with a hyphen
character. Note that this sequence of arguments may contain arguments
with wild-card characters that are expanded by the shell. For example,
--dirs A*.java would expand to all the java files in the current folder
that begin with ‘A’, and would work as expected. It is OK if this option has
no values — that is, if the very next command-line argument begins with a
hyphen. This might occur, for example, if in --dirs A*.java there were
no files matching the given pattern.

• --specs-path <path> : defines the specifications path, cf. §4.24.2, which is
analogous to classpaths and sourcepaths

• --keys <keys> : the argument is a comma-separated list of conditional an-
notation keys (cf. the JMLReferenceManual), used to conditionally enable
or disable designated annotations (cf. §4.54.5)

• --show-not-implemented : emits warnings about JML features that are
ignored because they are not implemented; the default is enabled.

• --nullable-by-default : sets the global default to be that all declarations
are implicitly @Nullable, if they are not explicitly declared @NonNull
(cf. §4.94.9)

• --nonnull-by-default : sets the global default to be that all declarations are
implicitly @NonNull (the default), if not explicitly declared @Nullable
(cf. §4.94.9)

• --check-specs-path : if enabled, checks that each element (directory or jar
files) of the specspath actually exists; if disabled (with --no-check-specs-
path), non-existent entries are silently ignored (default: enabled)

CHAPTER 5. OPENJML OPTIONS 40

5.5 Options: JML Information anddebugging
These options print summary information and immediately exit (despite the
presence of other command-line arguments):

• -? , -help, --help : prints out help information about the command-line
options

• --version : prints out the version of the OpenJML tool software

• -X, --help-extra : Java option to print out help about advanced or experi-
mental options

The following options provide different levels of verboseness. If more than one
is specified, the last one present overrides earlier ones.

• --silent : only an exit code

• --quiet : no informational output, only errors and warnings; warnings can
be omitted using -nowarn along with --quiet

• --normal : (default) some informational output, in addition to errors and
warnings

• --progress : prints out summary information as individual files are pro-
cessed and proofs are attempted (includes --normal)

• --verbose : prints out verbose information about the Java processing in
OpenJDK (does not include other OpenJML information)

• --jmlverbose : prints out verbose information about the JML processing
(includes --verbose and --progress)

• --jmldebug : prints out (voluminous) debugging information (includes
--jmlverbose)

• --verboseness <int> : sets the verboseness level to a value from -1 .. 4,
corresponding to --silent, --quiet, --normal, --progress, --jmlverbose, --
jmldebug

• -nowarn : this Java option turns off printing of warnings, leaving only
errors and verification failures

Other debugging options:

CHAPTER 5. OPENJML OPTIONS 41

• --show : prints out rewritten versions of the Java program files for infor-
mational and debugging purposes. It is generally useful to confine this
output to a single method using the --method=methodname option. There
are four parts to this output.

– --show prints all four
– --show=program prints the original program from its AST, after pars-

ing and type resolution
– --show=translated prints each method after JML statements have

been translated into Java, for either ESC or RAC
– --show=bb prints each selectedmethod after basic-block transforma-

tions (ESC only)
– --show=smt prints the smt commands as sent to the solver (if only

this output is needed, the --smt option is likely more convenient)
(ESC only)

A comma-separated list of a selection of the four identifiers may also be
used. Note that this output is quite lengthy.

An option used primarily for testing:

• -jmltesting : reduces the output so that test output is more stable

– no timing or prover identification information is output
– the verification success/failure summary is not output (as in --no-

show-summary)
– does not use the verification failure exit code (§3.43.4) (only until the

test output can be updated)
– uses ‘warning’ instead of ‘verify’ in verification assertion failure mes-

sages (only until the test output can be updated)
– does not show location back-pointer information in ‘Associated dec-

laration’ messages (only until the test output can be updated)
– in RAC, some location information is suppressed

5.6 JavaOptions: Version of Java language or class
files

• --source <level> : this option specifies the Java version of the source files,
with values of 4, ..., 17, This controls whether some syntax features

CHAPTER 5. OPENJML OPTIONS 42

are permitted. The default is the most recent version of Java (currently 17).

• --target <level> : this option specifies the Java version of the output class
files (for compilation or RAC)

5.7 JavaOptions: Other Java compiler options ap-
plicable to OpenJML

All the OpenJDK compiler options apply to OpenJML as well. The most com-
monly used or important OpenJDK options are listed here.

These options control where output is written:

• -d <dir> : specifies the directory in which output class files are placed; the
directory must already exist

• -s <dir> : specifies the directory in which output source files are placed;
such as those produced by annotation processors; the directory must al-
ready exist

These are Java options relevant to OpenJML whose meaning is unchanged in
OpenJML.

• --class-path or -cp or -classpath: the parameter gives the Java classpath to
use to find referenced classes whose source files are not on the command-
line (cf. §4.24.2)

• --source-path or -sourcepath: the parameter gives the sequence of direc-
tories in which to find source files of referenced classes that are not listed
on the command-line (cf. §4.24.2)

• -deprecation: enables warnings about the use of deprecated features (ap-
plies to deprecated JML features as well)

• -nowarn: shuts off all compiler warnings, but not verification failures or
Java and JML language errors

• -Werror: turns all warnings into errors, including compiler, JML type-
checking and JML verification failures

• -verbose: turn on Java verbose output (does not control JML output)
• -Xprefer:source or -Xprefer:newer: when both a .java and a .class file are
present, whether to choose the .java (source) file or the file that has the
more recent modification time.

CHAPTER 5. OPENJML OPTIONS 43

Issue 781: The -Xprefer option does not yet work for OpenJML. No new
page
here

Other Java options, whose meaning and use is unchanged from javac (and rarely
used by OpenJML:

• @<filename> : reads the contents of <filename> as a sequence of command-
line arguments (options, arguments and files), but Java options only

• -Akey
• -bootclasspath
• -encoding
• -endorsedirs
• -extdirs
• -g
• -implicit
• -J
• -X... : Java’s extended options

5.8 Control of lint-like warnings
OpenJML issues a number of suggestions about style and possible erroneous,
though not explicitly illegal use of JML. The --warn option enables control of
such warnings.

These warnings are grouped into categories, described below; each category can
be enabled or disabled individually. Each category has its own default as to
whether it is enabled or disabled by default.

• --warn=all — enable all warning categories
• --warn= — reset all warning categories to their defaults
• --warn=default — reset all warning categories to their defaults
• --warn=none — disable all warning categories
• --no-warn=all — disable all warning categories
• --warn=list — enable the given categories (leaving other categories un-
changed), where list is a comma-separated list of category names

• --no-warn=list — disable the given categories (leaving other categories un-
changed), where list is a comma-separated list of category names

This list and option are under development

CHAPTER 5. OPENJML OPTIONS 44

5.9 Java options related to annotationprocessing
Java has an annotation processing facility, affected by the options below. JML
and OpenJML do nothing with annotation processing. It has not been tested
whether OpenJML works in conjunction with annotation processing.

• -proc
• -processor
• -processorpath

5.10 Java options related to modules
Java 11 introduced modules to the Java language for the purpose of controlling
access to code more tightly than the Java visibility mechanism does. No inter-
action between JML and modules has been defined in JML or implemented in
OpenJML. Generally speaking, programs using JML should just use the default,
unnamed module.

• --add-module
• --limit-modules <modulelist>
• -m <module>
• --module <module>
• --module-path <path>
• --module-source-path <path>
• --module-version <version>
• -p <path>
• --upgrade-module-path

The above options are all Java options for handling modules, as of Java 11.
JML does nothing about modules per se, leaving all visibility checking to Open-
JDK.

Check that the option lists are comprehensive, and up to date with Java 17

Chapter 6

OpenJML tools — Parsing and
Type-checking

6.1 Parsing
OpenJML parses the .java files listed on the command-line, finds any corre-
sponding .jml files, and then also finds the files corresponding to classes men-
tioned in files already parsed. If a class has a .class file on the class-path
then it and any corresponding .jml file are read; if there is no already compiled
.class file (or the source file is newer or preferred, cf. the -Xprefer OpenJDK
option) then OpenJML finds and parses the source and specification file for the
class.

Parsing is affected by these options:

• the classpath, sourcepath and specspath (§4.24.2)
• the --stop-if-parse-errors causes the tool to stop after parsing files if any
parse errors are found. This is a fail-fast practice, rather than proceed-
ing with typechecking as much as possible to see what other errors there
might be. In any case, no verification attempts will be tried if there are
any parsing or typechecking errors.

• the --require-white-space option. If this option is enabled (disabled by
default) then a comment beginning with //@ or /*@ is only considered
to be JML if there is white space after the (sequence of) @ symbol. This
option is disabled by default but can be useful when incorporating source

45

CHAPTER 6. OPENJML TOOLS — PARSING AND TYPE-CHECKING 46

files that had Java annotations (e.g. @Override) that were commented
out to produce //@Override. Using this option avoids having non-JML
comments like these interpreted as erroneous JML comments.

6.2 Type-checking JML specifications
The type-checking phase includes all of OpenJDK’s name and type attribution
for Java; OpenJML adds type-checking of any JML annotation text and any .jml
files. OpenJML also ensures that the .jml files match the contents of the Java
.class or .java files.

A set of Java files with JML annotations is parsed and type-checked with the
command

openjml --check options files

or

openjml options files

since --check is the default action. Any .jml files are checked when the associ-
ated .java file is checked. Only .java files either listed on the command-line
or contained in folders listed on the command-line are certain to be checked.
Some checking of other files may be performed where references are made to
classes or methods in those non-listed files.

6.3 Command-line options for type-checking
The following command line options are particularly relevant to type-checking.

• --purity-check : turns on (the default) purity checking of library meth-
ods. Using Java library methods in specifications before specifications are
written for the called method usually provokes a complaint that the li-
brary method is not pure and may not be used in a specification. The
--no-purity-checking option can be used temporarily to suppress such
type-checking errors while specifications are being written. (This option
is slated for deprecation.)

Chapter 7

OpenJML tools — Static Deductive
Verification (ESC)

Type-checking is performed automatically prior to ESC (Extended Static Check-
ing). Thus ESC also depends on the information described in Chapters 33, 55 and 66,
particularly including the command-line options relevant to type-checking and
the discussion of class, source, and specification paths in §4.24.2.

7.1 Results of the static verification tool
The ESC tool operates on a method at a time. Which methods are considered
in a given execution of OpenJML are determined by options (cf. §7.3.37.3.3). The ESC
tool will result in one of four outcomes:

• It issues one or more verification failure messages.

• It finds no verification failures.

• It exhausts memory resources or allotted time.

• It encounters some internal bug.

These scenarios are discussed in the following subsections.

47

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)48

7.1.1 Finding verification faults
A run of OpenJML with --esc may find one or more static checking warnings.
Current OpenJML will find all the static check problems it can within a method.
However, the --esc-max-warnings option can limit the search to just one warn-
ing, or it can keep searching until a certain number of warnings are found, or
until no additional warnings can be found. If the goal is simply to determine
whether there are any faults, stopping at just one will save time; if the goal is
to find and fix all the faults, it may be convenient to search until no more can
be found. If there are multiple faults, the order in which they are found is non-
deterministic.

The static warnings found are grouped into various categories. For example if a
method is called but the method’s precondition cannot be proved to hold, then
a Precondition warning is reported. An explicit JML assert that cannot
be proved true, will result in an Assert warning. The various categories of
warnings are listed in Appendix BB.

Note that static warnings are reported if the tool cannot prove that the associ-
ated verification condition is satisfied. It may be that the verification condition
is indeed valid, but the tool simply is unable to prove it.

For example, the program
1 public class MaxEscWarnings {
2

3 public static void test(int i, int j) {
4 if (i > j) {
5 //@ assert j == 0;;
6 } else {
7 //@ assert i == 0;
8 }
9 }
10 }

and the command openjml -esc MaxEscWarnings.java produce the out-
put

1 MaxEscWarnings.java:5: verify: The prover cannot establish an assertion (Assert)
in method test

2 //@ assert j == 0;;
3 ^
4 MaxEscWarnings.java:7: verify: The prover cannot establish an assertion (Assert)

in method test
5 //@ assert i == 0;
6 ^
7 2 verification failures

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)49

perhaps with the two errors in the reverse order.

But with the command
openjml -esc -esc-max-warnings=1 MaxEscWarnings.java

only one error message is given (it could be either one).

By default, OpenJML produces a verification error message just once for a given
assertion, even if it is reachable by multiple paths. In particular, the postcon-
ditions are single assertions reachable from each return statement. So with the
command openjml -esc MaxEscWarnings.java the program

1 public class MaxEscWarnings {
2

3 //@ ensures \result == 0;
4 public static int test(int i, int j) {
5 if (i > j) {
6 return j;
7 } else if (i < j) {
8 return i;
9 }
10 return 100;
11 }
12 }

produces the output
1 MaxEscWarnings.java:6: verify: The prover cannot establish an assertion (

Postcondition: MaxEscWarnings.java:3:) in method test
2 return j;
3 ^
4 MaxEscWarnings.java:3: verify: Associated declaration: MaxEscWarnings.java:6:
5 //@ ensures \result == 0;
6 ^
7 2 verification failures

with just one verification error, even though the postcondition is violated by
every return statement.

The option –esc-max-warnings-path (which is disabled by default) asksOpenJML
to test each path to a given assertion, including each postcondition clause. So
the above program with the command

openjml -esc -esc-max-warnings-path MaxEscWarnings.java

gives the output
1 MaxEscWarnings.java:6: verify: The prover cannot establish an assertion (

Postcondition: MaxEscWarnings.java:3:) in method test
2 return j;
3 ^
4 MaxEscWarnings.java:3: verify: Associated declaration: MaxEscWarnings.java:6:
5 //@ ensures \result == 0;
6 ^

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)50

7 MaxEscWarnings.java:8: verify: The prover cannot establish an assertion (
Postcondition: MaxEscWarnings.java:3:) in method test

8 return i;
9 ^
10 MaxEscWarnings.java:3: verify: Associated declaration: MaxEscWarnings.java:8:
11 //@ ensures \result == 0;
12 ^
13 MaxEscWarnings.java:10: verify: The prover cannot establish an assertion (

Postcondition: MaxEscWarnings.java:3:) in method test
14 return 100;
15 ^
16 MaxEscWarnings.java:3: verify: Associated declaration: MaxEscWarnings.java:10:
17 //@ ensures \result == 0;
18 ^
19 6 verification failures

(or some permutation of the given errors).

7.1.2 Checking feasibility
A run of OpenJML with --esc may find no warnings through static checking. In
this case, the tool can run additional checks to be sure the program is feasible,
that is, that the specifications and the implementation actually permit execution
of the program. By default, OpenJML does not do feasibility checking because it
can bemisleading or time-consuming; however a careful verification process will
do some level of feasibility checking before considering a verification successful.
Feasibility checking is discussed in more detail in §7.27.2.

7.1.3 Timeouts and memory-outs
The underlying SMT solvers may report a time-out or memory exhaustion. One
option is to increase the time out limit (with the --timeout option). An alternate
recourse in this situation is to attempt to simplify the implementation or the
specification. A time-out option to OpenJML is passed through to the underly-
ing SMT solver for it to interpret according to its own implementation, so the
user can do some experimentation. When running static checking on a whole
group of methods, it is useful to use a somewhat short time-out value, so that
particularly difficult methods do not unduly delay obtaining results for other
methods.

The value of the timeout option is the number of seconds to which to limit the
proof attempt, for each method or method split or feasibility check, individu-
ally.

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)51

If OpenJML ends by exhausting memory, it is generally a problemwith the solver.
There is currently no control over the memory available to the SMT solver (aside
from finding a larger computer).

7.1.4 Bugs
Despite the author’s continuing efforts, there still remain bugs and limitations
in OpenJML. If you encounter any, please report them with as much information
as possible, via the OpenJML GitHub project:

https://www.github.com/OpenJML/OpenJML/issueshttps://www.github.com/OpenJML/OpenJML/issues .
A useful bug report includes all the source code required to reproduce the prob-
lem, the operating system being used, the version of Java and OpenJML; the most
useful reports will pare down the source code to a minimum amount that still
provokes the error.

7.2 Checking feasibility: --check-feasibility
--check-feasibility where: checks feasibility of the program at various points as
described below. The default is none.

Deductive verification typically asks the question: are there any legal inputs
that would render an implicit or explicit assertion false? A second question is:
are there any legal inputs that cause execution to reach a given point in the pro-
gram? That is, is the execution path to that point in the program feasible?

The question of feasibility can be important for several reasons.

• If there is indeed some infeasible execution path, then any assertions on
that path will not be checked. Then a verification attempt can be success-
ful (no verification errors reported), when in fact that success is because
there was nothing to check (because that or maybe all execution paths are
infeasible). Thus after a successful verification attempt it can be prudent
to check feasibility.

• If there are contradictory assumptions (e.g., assume statements or precon-
ditions or invariants) then any point after those assumptions will not be
feasible. For example

1 // openjml --esc --check-feasibility=exit T_Feasibility1.java
2 public class T_Feasibility1 {
3

https://www.github.com/OpenJML/OpenJML/issues

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)52

4 //@ requires i < 0;
5 //@ ensures \result > 0;
6 public int m(int i) {
7 //@ assume i > 0;
8 return i;
9 }
10 }

produces
1 T_Feasibility1.java:6: verify: There is no feasible path to program point

at program exit in method T_Feasibility1.m(int)
2 public int m(int i) {
3 ^
4 1 verification failure

• When method A calls method B, the verification of method A relies on
correct specifications for method B. Consider this example:

1 // openjml --esc --check-feasibility=call T_Feasibility4.java
2 abstract class A {
3 public int kk;
4 //@ ensures kk == \old(kk) + 1;
5 //@ pure // faulty spec
6 abstract public void mm();
7 }
8 abstract public class T_Feasibility4 extends A {
9 //@ requires i > 0;
10 public void m(int i) {
11 mm();
12 }
13 }

Verification without checking feasibility reports no errors. However, when
feasibility is checked, a problem is reported with the call of ‘mm()‘.

1 T_Feasibility4.java:11: verify: There is no feasible path to program point
after call in method T_Feasibility4.m(int)

2 mm();
3 ^
4 1 verification failure

The problem here is that the specs of ‘mm()‘ say that the method is ‘pure‘,
meaning that it changes nothing, but the ensures clause says that ‘k‘ is
incremented. This contradiction results in stopping any verification after
the method call. The feasibility check indeed finds this problem. This ex-
ample points out the necessity of verifying all methods used in a program
before the program can be considered verified. This is particularly rele-
vant to library methods. These may well have specifications, but a typical
client of the library will be forced to trust these specifications and will not

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)53

have the source code to even attempt a verification of the library methods
the client uses.

• Some branches of the codemay be dead, that is, are never executed. In fact
sometimes onemaywish to prove that a branch, such as an error reporting
or recovery branch, will not be executed. Feasibility checking can assist in
detection of dead code.

All the various places that OpenJML implements feasibility checking are enu-
merated below. But first, some caveats are in order.

• Feasibility checking can be time-consuming and especially so if the path in
question is not feasible. Accordingly, feasibility checking is off by default.

• Feasibility checking only says that some input combination will reach the
given program point, not whether all the combinations you expect will
reach that point. For example, if a program has assumptions i<= 0 and
i >= 0, it will still be feasible for x == 0, but that may not be the pro-
grammer’s intent.

• If method A calls method B and method B is underspecified, then an ex-
ecution path may be considered to be feasible, when in reality it is not.
Remember that when checking method A, only the specifications of B are
considered. Look at this example:

1 // openjml --esc --check-feasibility=reachable T_Feasibility2.java
2 public class T_Feasibility2 {
3

4 //@ requires i >= 0;
5 public void m(int i) {
6 int j = abs(i);
7 if (i != j) {
8 // Should never get here!
9 //@ reachable
10 }
11 }
12

13 //@ requires i != Integer.MIN_VALUE;
14 //@ ensures \result >= 0;
15 public static int abs(int i) {
16 return i < 0 ? -i : i;
17 }
18 }

The command stated at the top of the example checks whether it is possi-
ble to reach the ‘reachable‘ statement in the program. Indeed, the check
runs without complaint, meaning that the program point is indeed reach-

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)54

able. Given that for positive numbers, the ‘abs‘ method should just return
its input, how can this be? Well,. in verifying method ‘m‘ all we see is
the specification of ‘abs‘. That specification is underspecified. It only says
that the output is non-negative, not that it is equal to the input or its nega-
tion. Replacing the ‘reachable‘ statement with an ‘unreachable‘ statement
helps us do some debugging:

1 // openjml --esc T_Feasibility3.java
2 public class T_Feasibility3 {
3

4 //@ requires i >= 0;
5 public void m(int i) {
6 int j = abs(i);
7 //@ show i, j;
8 if (i != j) {
9 // Should never get here!
10 //@ unreachable
11 }
12 }
13

14 //@ requires i != Integer.MIN_VALUE;
15 //@ ensures \result >= 0;
16 public static int abs(int i) {
17 return i < 0 ? -i : i;
18 }
19 }

produces
1 T_Feasibility3.java:7: verify: Show statement expression i has value 1
2 //@ show i, j;
3 ^
4 T_Feasibility3.java:7: verify: Show statement expression j has value 2
5 //@ show i, j;
6 ^
7 T_Feasibility3.java:10: verify: The prover cannot establish an assertion (

Unreachable) in method m
8 //@ unreachable
9 ^
10 3 verification failures

which shows that that the verifier thinks that ‘i‘ and ‘j‘ can be different
(the specific values of ‘i‘ and ‘j‘ may be different from run to run).

So feasibility checking can be useful if these caveats are kept in mind. Feasibility
checking is disabled by default and is enabledwith the --check-feasibility option.
The argument of that option is a comma-separated list of location identifiers,
listed below. In addition there are some common combinations:

• none – turns off any feasibility checking

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)55

• basic – turns on just precondition, assert, assume, reachable, exit, halt,
and spec

• all – turns on everything
• debug – just for debugging of OpenJML itself

Here are the possible places that can be checked:

• reachable – all points in the method explicitly marked with a ‘//@ reach-
able;‘ statement

• precondition – at the beginning of the method body; checks whether
there are contradictions in the preconditions and invariants

• assert – just before each explicit assert statement; if the execution path
to the assertion is not feasible, the assertion will never be checked

• assume – just after each explicit assume statement; if the execution path
is not feasible, there is something wrongwith the predicate being assumed
(or something wrong before it)

• return – is every return statement feasible (after computing the return
value)

• throw – is every throw statement feasible (after computing the throw
expression)

• if – are both branches of the if condition feasible
• switch – are all branches of a switch statement feasible
• catch – at the beginning of each catch block
• finally – at the beginning of each finally block
• spec – at the end of every statement spec block
• call – after any call
• halt – at each halt statement
• loopcondition – at the beginning of the loop body
• loopexit – on the exit branch after testing the loop condition
• exit - is it possible to exit the program (normally or with an exception)

Need examples

7.3 Options specific to static checking

7.3.1 Controlling nullness
• --nullable-by-default: sets the global default to be that all variable, field,
method parameter, and method return type declarations are implicitly

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)56

@Nullable

• --nonnull-by-default: sets the global default to be that all variable, field,
method parameter, and method return type declarations are implicitly
@NonNull (the default)

Nullness control is discussed more fully in §4.94.9.

7.3.2 Choosing the solver used to check (--prover, --exec)
OpenJML uses SMT solvers to check all the conditions that are implied by the
program and its specifications. In principle, any solver compliant with SMT-
LIB-v.2.5[99] can be used. In practice, there are some limitations.

First, only a few solvers support the range of SMT-LIB logics that are used by
OpenJML. Software verification naturally uses quantified expression, models of
arrays, bit-vectors, mathematical integers and reals with non-linear operations,
strings, sets, and sequences; in short, any well-defined mathematical object use-
ful in describing how a piece of software works would be helpful. Some SMT
solvers support just one logic, such as quantifier-free bit-vectors; a few support
every logic defined in SMT-LIB, which is only a subset of the list above.

Second, the existing SMT solvers do not completely support SMT-LIB-v2.5. Con-
sequently there is an adapter library, jSMTLIB[99], that translates standard SMT-
LIB to an input suitable for the SMT solvers it supports. Further then, a new
version of an SMT solver must be supported by jSMTLIB before it can be used.
jSMTLIB does have a generic path for a fully-compliant solver.

Third, the various solvers differ in their capabilities. Some are faster or more reli-
able than others, perhaps just for particular logics. So it is useful to try different
solvers on non-trivial proof problems.

• --prover prover: the name of the prover to use: one of
– z3_4_3 : description of versions here and for each item
– z3_4_5
– cvc4
– yices2
– [TBD: expand list]
– What to say for a compliant SMT solver

• --execpath: the absolute path to the executable corresponding to the given
prover

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)57

Table 7.1: Effect of --method and --exclude

--method option --exclude option result
no option present or match none or no match checked
option present but no match none or no match skipped
- match skipped

Solvers typically have different executables for different operating systems. Open-
JML automatically chooses the correct solver based on its detection of the oper-
ating system on which it is running (using the Java os.name system property).
That determination can be overridden using the --os-name option, which recog-
nizes the values macos, linux, and windows. In an OpenJML distribution, the
different solvers are placed in subfolders named Solvers-OS for each sup-
ported OS name.

One other option related to solvers is –-logic, whose value is the SMT logic to
use. Current SMT solvers select a SMT logic automatically, typically as all but
just those logics needed to process the given SMT input. Thus this option is
rarely needed and may well fail if actually tried. It may be removed in the near
future.

7.3.3 Choosing what to check (--method, --exclude)
The default behavior is to check each method in each file and folder listed on
the command-line (or selected in the GUI). The set of methods checked can be
constrained by these options. In particular the --method option is often used to
constrain checking to a single method while that method or its specifications
are being debugged.

• --method <methodlist> : a semicolon-separated list of method names to
check (default is all methods in all listed classes)

• --exclude <methodlist> : a semicolon-separated list of method names to
exclude from checking (default: no methods are excluded)

• skipesc : a modifier on a class or method that indicates not to verify that
method or methods in that class (cf. §9.2.19.2.1)

The --method and --exclude options interact as shown in Table 7.17.1; in summary,
--exclude overrides --method.

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)58

• If there are multiple instances of --method options, only the last one ap-
plies, as is the rule for all options. The same applies to the --exclude op-
tion. To specify multiple methods or exclude rules, use one option with a
semicolon-separated list of strings.

• If a method is skipped because of these rules, then any classes or methods
within the skipped method are also skipped.

• Despite the --method option, anymethod or type annotatedwith @SkipEsc
or skipesc is skipped

• The name of a constructor is the name of the class.

• There is no way to name anonymous classes or lambda functions in order
to check or skip them.

• The list of strings to match is semicolon-separated rather than comma-
separated because method signatures can contain commas. If multiple en-
tires are separated by semicolons, you will likely have to quote the whole
option to avoid the shell considering the semicolon the end of the com-
mand.

The --show-skipped option (§7.3.37.3.3) controls output about which methods are
being skipped for verification. Using this option (which is on by default) prevents
silently forgetting that some method is not being proved.

Matching rules. The argument of the --method and --exclude options is a
semicolon-separated set of strings. A method matches if any one of the indi-
vidual strings matches the name of the method. A match occurs if anyone of
the following is true:

• the string is the simple name of the method
• the string is the fully-qualified name of the method
• the string is the fully-qualified signature of the method, with the argu-
ments represented just by their fully-qualified types (and no white space)

• the string, interpreted as a regular expression (in the sense of
java.util.regex.Pattern) matches the fully-qualified signature
of the method

For example, themethod mypackage.MyClass.mymethod(Integer i, int

j) is matched by any of the following:

• mymethod

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)59

• mypackage.MyClass.mymethod

• mypackage.MyClass.mymethod(java.lang.Integer,int)

• *MyClass*

7.3.4 Control over what is checked
It is helpful sometimes to suppress some kinds of checks in order to focus on
other problems or because a specification is still in development.

7.3.4.1 Checking accessible (reads) clauses: --check-accessible

The accessible clauses state what memory locations a method may read. When
writing specifications they are often left until later in the process to be written;
often they are just left as accessible \everything .

So it is sometimes useful to disable checking these clauses: --no-check-accessible
does so. The check is enabledwith --check-accessible, which is the default.

purity checking

staticInitWarning

7.3.5 Detail about the proof result
When OpenJML+SMT is unable to validate an assertion, it can be difficult to
debug the problem: the problem can be either an insufficiently capable solver or
mismatched specifications and implementation. The following options provide
some tools to help understand the proof results.

• --esc-max-warnings int: the maximum number of assertion violations to
look for; the argument is either a positive integer or All (or equivalently
all, default is All)

• --trace: prints out a counterexample trace for each failed assert
• --subexpressions: prints out a counterexample trace with model values for
each subexpression

• --counterexample or -ce: prints out counterexample information

Provide more information and examples

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)60

7.3.6 Dividing up the proof: --split
The split statement (§9.1.59.1.5) enables splitting up the usually single, large verifi-
cation condition for a method into sections that may be more manageable. The
--split option controls which splits of the verification condition are attempted.
Splitting proofs and this option are described in §9.1.5.69.1.5.6.

7.3.7 Controlling output
ESC can take a while to run if operating on a large set of software. It is useful
then to have good progress reporting and to control the output produced. The
basic controls are the level of verbosity, in particular the --progress setting and
the options described in the previous subsection (§7.3.57.3.5).

On a first run through a large set of data, it is helpful to use the following set of
options:

• --progress : so that the starting and completing each method is reported;
these delineations also serve to associate warning and error reports with
the method that produced them

• --esc-max-warnings=1 : just one warning per method saves time and is
enough to tell whether further work will be needed. Allow a higher limit
when detailed analysis is being performed on just one or a few methods.

• --check-feasibility=none : (which is the default)

• Do not request tracing or counterexample information : this information is
most helpful during debugging of singlemethods; in runs overmanymeth-
ods it just adds (voluminous) information that makes the output more dif-
ficult to understand

Such an initial run gives an overall understanding of where there are proof prob-
lems. Subsequent analysis can then be concentrated on problem points.

7.3.8 Options affecting the internal encoding
There are a variety of ways to encode Java and JML source code into logical
expressions. Indeed this is an ongoing area of research. OpenJMLmay implement
more than one technique for some aspect of encoding and define an option to
allow selecting between them and experimenting with their effectiveness.

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)61

Such options may be transient, only lasting until their effectiveness is estab-
lished or disproved.

• --esc-bv mode : this option controls whether fixed-bit-width integer op-
erations are encoded as mathematical integer operations or as operations
on bit-vectors. It is described in §4.114.11.

7.3.9 Miscellaneous options
• --solver-seed n : solvers typically are non-deterministic in their approach
to searching for a proof or counterexample, basing some search decisions
on some internal pseudo-random number generator. This property leads
to runtimes and even proof success varying from one run to another. That
nondeterminism can be reduced by specifying the seed the solver should
start with; OpenJML passes the value of this option to the backend solver.
The effectiveness in reducing nondeterminism varies. A value of 0 means
not to set a seed.

• --timeout secs : Some proofs take a long time. In production work it is
advisable to set a timeout. This option takes an integer number of seconds
and passes it on to the solver. (OpenJML does not itself impose a timeout;
it is up to the solver to do so correctly. You can also use a shell wrapper
command such as the Linux/MacOS timeout shell command to limit the
runtime of OpenJML itself.)

• --verify-exit n : By default if the input to OpenJML has a verification failure
(but no other errors), OpenJML will exit with an exit code of 6 (cf. §3.43.4).
This option allows you to set that value to an integer in the range 0-6, that
is, to set it to be the same as a different kind of error or to be 0 and not an
error at all.

• --smt file-pattern : This option gives the names of a file into which will
be written the generated SMT-LIB commands that are sent to the SMT
solver as the proof attempt for a method. If a simple filename is used,
then the file will be overwritten for each method. So that option is most
useful when a singlemethod is being verified. Alternatively, on can include
in the file-pattern the sequence %_, which will be replaced by the name of
themethod, or the sequence%%, whichwill be replaced by a fully-qualified
method signature (which is unique within a set of classes). If the pattern is

CHAPTER 7. OPENJML TOOLS— STATIC DEDUCTIVE VERIFICATION (ESC)62

an empty string, a fixed name (out.smt2) is used. The default (--no-smt)
is not to write any output file.

Chapter 8

OpenJML tools — Runtime
Assertion Checking (RAC)

In Runtime Assertion Checking, a program is compiled to carry out its normal
function, except that various assertions are compiled in and checked during the
program’s execution. If any assertions are found to be false, some error indica-
tion is emitted. In the case of JML, the assertions come from the specifications
— they are checks that the specifications hold, at least for the particular execu-
tion of the program. Hence, RAC is an instrumented version of classic dynamic
testing.

8.1 Compiling classes with assertions
Compiling classes for runtime-assertion checking (RAC) is accomplished by

• compiling a program with the regular Java compiler
• compiling some (or all) of the resulting classes again with RAC enabled

The command-line to compile for RAC is the same as the command-line for Java
compilation, except

• openjml is used instead of javac
• the option --rac is included (alongwith any other desiredOpenJML options)

There are a few points to note:

63

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)64

• Both openjml and javac will compile all the classes on the command-
line and any classes referred to by those classes but not yet compiled.
Hence it can be useful to perform a full javac compilation first, so no un-
expected files have RAC enabled.

• Assertions are compiled only into classes compiled with --rac, and not into
library classes or super classes.

• Assertion violations are reported only for the particular execution of the
program. An absence of reports does not mean that some other run of the
program (with different inputs) will be free of assertion violations.

It is helpful to understand what assertions are generated (and checked by RAC).
Options described below can control which of these assertions are included.
Note that preconditions and postconditions may be checked twice, once by the
caller and once by the callee. At the time a given class is compiled, it does not
know whether its counterpart in the caller-callee relationship will also be com-
piled with assertion checks; hence the precondition or postcondition is checked
by both, to ensure it is at least checked once. The following list includes themost
common checks; the full set is listed with more detail and examples in Appendix
BB.

• well-definedness checks of any assertion or assumption, before the asser-
tion or assumption itself is checked

• any explicit JML assert, reachable and unreachable statement
• any explicit JML assume statement (not checked by default)
• non-null checkswhen a object is deferenced (dot-operator or array-element
operator)

• non-null checks when a reference variable or formal parameter declared
NonNull is assigned

• array index is in range when an array is indexed
• checks implied by assignable clauses on any assignment
• checks implied by accessible clauses on any read in Java code
• pre-conditions and invariants of a callee, checked as assertions by the
caller before calling a callee

• pre-conditions and invariants of a callee, checked as assumptions by a
callee after being called but before executing the body of the callee (not
checked by default)

• post-conditions and invariants of a callee, checked as assertions by a callee
after executing the body of the callee

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)65

• post-conditions and invariants of a callee, checked as assumptions by a
caller after returning from a callee (not checked by default)

8.2 Executing a RAC-compiled programs
To execute a RAC-compiled program, either

• (a) run the program as usual but using openjml-java rather than java

• or (b) run the program with conventional java (at least V17) but include
the jmlruntime.jar library on the classpath.

8.3 Options specific to runtime checking

8.3.1 --show-not-executable
--show-not-executable: (default: disabled) warns about the use of features that
are not executable (and thus ignored). Some features of JML are not executable.
If this option is enabled, warnings are printed during RAC compilation when
such features are used. Turning on this option can be helpful to a user unsure
why a particular assertion is not being reported failing, just to be sure it is actu-
ally being compiled.

8.3.2 --show-not-implemented
--show-not-implemented: (default: enabled) warns about the use of features
that are not yet implemented (and thus ignored). This option is on by default,
but the user may wish to disable it (with --no-show-not-implemented in order to
reduce warning messages that are not adding useful information. Some features
may be implemented for static checking but not for RAC (or vice versa).

8.3.3 --rac-show-source
--rac-show-source choice: (default: source; choices: none, line, source) includes
source location in RAC warning messages. If this option is set to source then
RAC assertion violationmessages will include text from the source file indicating
the location of the violation, in addition to the report of line number. The option
can provide more helpful error information, but it also can considerably increase

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)66

the size of the compiled classes. So for large programs, it may be helpful to set
this option to ‘line’.

As an example, the input file

1 public class A {
2

3 public static void main(String... args) {
4 //@ assert args.length == 1;
5 }
6 }

when compiled with the command
openjml --rac --rac-show-source=source A.java

and run with
openjml-java A

produces the output

1 A.java:4: verify: JML assertion is false
2 //@ assert args.length == 1;
3 ^

If compiled with
openjml --rac --rac-show-source=line A.java

the output is

1 A.java:4: verify: JML assertion is false

If compiled with
openjml --rac --rac-show-source=none A.java

the output does not even have the line numbers:

1 verify: JML assertion is false

8.3.4 --rac-check-assumptions
--rac-check-assumptions: (default: enabled) when enabled, both assumptions
and assertions are checked. Checking both gives more thorough runtime check-
ing, but also increases the size of the RAC-enabled program considerably. If size
or runtime performance becomes a problem, the user may wish to disable this
feature. However, when the option is disabled, users can sometimes be confused
about why an apparent violation is not reported.

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)67

This option particularly affects the checking and reporting of pre- and postcondi-
tions. When a method (the callee) is called from an another method (the caller),
the preconditions of the callee are checked (an assertion) by the caller before the
call, and the postconditions are assumed by the caller after the call. Within the
callee, however, the preconditions are assumed at the beginning of the method
execution and the postconditions are asserted at the end.

So this input file

1 public class A {
2

3 public static void main(String ... args) {
4 m(args.length);
5 mm(args.length);
6 }
7

8 //@ requires i == 1;
9 //@ ensures \result == 20;
10 public static int m(int i) {
11 return 10;
12 }
13

14 //@ requires i == 0;
15 //@ ensures \result == 20;
16 public static int mm(int i) {
17 return 10;
18 }
19 }

when compiled with the command
openjml --rac --rac-check-assumptions A.java

and run with
openjml-java A

produces the output

1 A.java:4: verify: JML precondition is false
2 m(args.length);
3 ^
4 A.java:10: verify: Associated declaration: A.java:4:
5 public static int m(int i) {
6 ^
7 A.java:8: verify: JML precondition is false
8 //@ requires i == 1;
9 ^
10 A.java:16: verify: JML postcondition is false

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)68

11 public static int mm(int i) {
12 ^
13 A.java:15: verify: Associated declaration: A.java:16:
14 //@ ensures \result == 20;
15 ^
16 A.java:5: verify: JML postcondition is false
17 mm(args.length);
18 ^
19 A.java:15: verify: Associated declaration: A.java:5:
20 //@ ensures \result == 20;
21 ^

The example output shows the preconditions and postconditions each being
checked twice, once by the caller and once by the callee, because both assump-
tions and assertions are checked at runtime. The postcondition of m is not
checked because its precondition is not true.

However, if the example is compiled with
openjml --rac --no-rac-check-assumptions A.java

the output is

1 A.java:4: verify: JML precondition is false
2 m(args.length);
3 ^
4 A.java:10: verify: Associated declaration: A.java:4:
5 public static int m(int i) {
6 ^
7 A.java:16: verify: JML postcondition is false
8 public static int mm(int i) {
9 ^
10 A.java:15: verify: Associated declaration: A.java:16:
11 //@ ensures \result == 20;
12 ^

Here only assertions are checked: the preconditions by the caller and the post-
conditions by the callee.

So why not always disable this option to avoid duplication? The duplication
happens because both the caller and the callee are being compiled with RAC.
If, however, the callee was a library routine that was not compiled with RAC,
then we would want both the postconditions and preconditions checked by the
caller, and then we would want this option enabled.

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)69

8.3.5 --rac-java-checks
--rac-java-checks: (default: disabled) when enabled, runtime-assertions that
check for Java language violations are enabled. Enabling this feature causes
more thorough checking and causes all violations to be reported uniformly. How-
ever it also increases the size of RAC-compiled programs. If this option is dis-
abled, RAC will not check for the violation, but Java will. For example, if there is
an array index operation, JML can check that the array index is within bounds.
If the JML check is disabled, Java will report a ArrayIndexOutOfBounds ex-
ception, so the violation will be reported to the user anyway, just through a dif-
ferent exception. Because of this backup Java checking and to reduce compiled
code size, this option is disabled by default. However, the option is useful dur-
ing testing, because then all violations of JML assertions are reported through
OpenJML, so a test harness can uniformly detect and report violations during
unit testing.

The discussion in §8.48.4 below is also important to when and how JML violations
are reported.

As an example, the input file

1 public class A {
2

3 public static void main(String ... args) {
4 int i = args.length;
5 int j = i/(i-i);
6 }
7

8 }

when compiled with the command
openjml --rac --rac-java-checks A.java

and run with
openjml-java A

produces the output

1 A.java:5: verify: JML Division by zero
2 int j = i/(i-i);
3 ^
4 Exception in thread "main" java.lang.ArithmeticException: / by

zero
5 at A.main(A.java:5)

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)70

The output contains first a JML error that an imminent divide-by-zero was de-
tected. Then the program proceeds to execute the division and produces a stan-
dard Java error.

If compiled with
openjml --rac --no-rac-java-checks A.java

the output is

1 Exception in thread "main" java.lang.ArithmeticException: / by
zero

2 at A.main(A.java:5)

Here the JML check is omitted, so only the Java exception is reported. Java’s re-
port of an exception is sent to the standard error output (System.err), whereas
JML’s output goes to standard out (System.out).

8.3.6 --rac-compile-to-java-assert
--rac-compile-to-java-assert: (default: disabled) compiles RAC checks into Java
assert statements (which throw java.lang.AssertionError when enabled
using -ea during execution, instead of using
org.jmlspecs.utils.JmlAssertionError. When this option is enabled,
all assertion violation reporting is through Java assert statements and all the
alternatives described in §8.48.4 are ignored. Furthermore, no reports will be gen-
erated at all at runtime unless the Java option -ea is enabled. One advantage of
this mechanism is that Java allows controlling assertion reporting by class and
package, by customizing the -ea option. (See the Java documentation for -ea and
-da for specific information.)

So this input file

1 public class A {
2

3 public static void main(String ... args) {
4 //@ assert args.length == 1;
5 }
6 }

when compiled with the command
openjml --rac --rac-compile-to-java-assert A.java

and run with

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)71

openjml-java -ea A

produces the output

1 Exception in thread "main" java.lang.AssertionError: A.java:4:
verify: JML assertion is false

2 //@ assert args.length == 1;
3 ^
4 at A.main(A.java:4)

Whereas when compiled with the command
openjml --rac --no-rac-compile-to-java-assert A.java

and run with
openjml-java A

it produces the output

1 A.java:4: verify: JML assertion is false
2 //@ assert args.length == 1;
3 ^

8.3.7 --rac-precondition-entry
In automated testing using RAC, it is useful to distinguish precondition errors
at the top-level, which indicate invalid input data, from internal precondition er-
rors, which indicate some bug in using amethod internally. The --rac-precondition-
entry option (off by default) enables such behavior.

Here is an example:
1 import org.jmlspecs.runtime.*;
2 public class Demo {
3

4 //@ requires i >= 0;
5 public static void outer(int i) {
6 inner(i);
7 }
8

9 //@ requires i > 0;
10 public static void inner(int i) {
11 }
12

13 public static void main(String ... args) {
14 outer(1); // OK
15 try {
16 outer(-1); // Outer precondition fails
17 } catch (JmlAssertionError.PreconditionEntry e) {
18 System.out.println("OK");
19 }
20 try {

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)72

21 outer(0); // Inner precondition fails
22 } catch (JmlAssertionError.PreconditionEntry e) {
23 throw e; // FAILURE;
24 } catch (JmlAssertionError.Precondition e) {
25 System.out.println("OK");
26 }
27 try {
28 inner(0); // Precondition fails
29 } catch (JmlAssertionError.PreconditionEntry e) {
30 System.out.println("OK");
31 }
32 }
33 }

If the above program is compiled with
openjml -rac -rac-precondition-entry PreconditionEntry.java

and run with openjml-java PreconditionEntry, then the output is just a
series of “OK" text. Inspecting the program shows that

• the mainmethod acts as test harness and calls outer, which calls inner,
with various arguments.

• when outer is called with an argument that violates its own precondition,
a JmlAssertionError.PreconditionEntry exception is thrown

• when outer is called with an argument that satisfies its own precondition
but violates the precondition of the call to inner, a
JmlAssertionError.Precondition exception is thrown

• however, if inner is called directly with an argument that violates its own
precondition, a JmlAssertionError.PreconditionEntry exception
is thrown

Using this option sets the -Dorg.jmlspecs.openjml.rac=exception alter-
native described in §8.48.4. It does not work if --rac-compile-to-java-assert is set.
It works whether or not --rac-check-assumptions is set.

8.4 Controlling how runtime assertion violations
are reported

There are three ways in which a RAC-compiled program can report assertion
violations, in addition to using Java assert statements as described in §8.3.68.3.6.
These can be controlled by a property set at the time the RAC-enabled program
is run (not when it is compiled).

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)73

• A) as messages printed to System.out. In this case the program will
continue executing after printing the assertion violation and may possibly
encounter and report additional violations or Java exceptions. This report-
ing mechanism is the default and applies if property
org.jmlspecs.openjml.rac is not set or set to the value stdout.

• B) if org.jmlspecs.openjml.rac is set to showstack then messages
are issued is in (A) above, but a stack trace is printed along with the eror
message. This makes the output more verbose, but may make it easier to
debug why a particular violation is occurring.

• C) as a thrown exception of some subtype of
org.jmlspecs.utils.JmlAssertionError. This reporting mecha-
nism is used if the system property
org.jmlspecs.openjml.rac is set to exception at runtime. The sub-
type is determined by the kind of violation, as described later in this sec-
tion. Execution of the program stops with the first violation reported.

• D) as a thrown exception of the type java.lang.AssertionError. Ex-
ecution of the program stops with the first violation reported. This is the
same kind of assertion that is thrown by a Java assert statement. This
reporting mechanism is used if
org.jmlspecs.openjml.rac is set to the value assertionerror.

• E) as a thrown exception of the type java.lang.AssertionError but
generated from a Java assert statement. Execution of the program stops
with the first violation reported. This reporting mechanism is used if
org.jmlspecs.openjml.rac is set to the value javaassert. It is re-
quired that the option -esa is used a runtime also.

Recall that system properties can be enabled by running the program with a
command-line like
openjml-java -Dorg.jmlspecs.openjml.rac=stdout MyProgram

As an example, the input file
1 public class A {
2

3 //@ requires i > 0;
4 public static void m(int i) {
5 }
6 public static void main(String ... args) {
7 m(0); // Precondition error
8 }

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)74

9

10 }

when compiled with the command
openjml --rac A.java

and run with
openjml-java A

or
openjml-java -Dorg.jmlspecs.openjml.rac=stdout A

(option A) produces the output
1 A.java:7: verify: JML precondition is false
2 m(0); // Precondition error
3 ^
4 A.java:4: verify: Associated declaration: A.java:7:
5 public static void m(int i) {
6 ^
7 A.java:3: verify: JML precondition is false
8 //@ requires i > 0;
9 ^

If compiled the same way but run with
openjml-java -Dorg.jmlspecs.openjml.rac=showstack A

(option B) the output is
1 org.jmlspecs.runtime.JmlAssertionError$Precondition: A.java:7: verify: JML

precondition is false
2 m(0); // Precondition error
3 ^
4 A.java:4: verify: Associated declaration: A.java:7:
5 public static void m(int i) {
6 ^
7 at java.base/org.jmlspecs.runtime.Utils.createException(Utils.java:126)
8 at java.base/org.jmlspecs.runtime.Utils.assertionFailureL(Utils.java:96)
9 at A.main(A.java:1)
10 org.jmlspecs.runtime.JmlAssertionError$Precondition: A.java:3: verify: JML

precondition is false
11 //@ requires i > 0;
12 ^
13 at java.base/org.jmlspecs.runtime.Utils.createException(Utils.java:126)
14 at java.base/org.jmlspecs.runtime.Utils.assertionFailureL(Utils.java:96)
15 at A.m(A.java:1)
16 at A.main(A.java:7)

If compiled the same way but run with
openjml-java -Dorg.jmlspecs.openjml.rac=exception A

(option C) the output is
1 Exception in thread "main" org.jmlspecs.runtime.JmlAssertionError$Precondition: A

.java:7: verify: JML precondition is false
2 m(0); // Precondition error

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)75

3 ^
4 A.java:4: verify: Associated declaration: A.java:7:
5 public static void m(int i) {
6 ^
7 at java.base/org.jmlspecs.runtime.Utils.createException(Utils.java:126)
8 at java.base/org.jmlspecs.runtime.Utils.assertionFailureL(Utils.java:94)
9 at A.main(A.java:1)

If compiled the same way but run with
openjml-java -Dorg.jmlspecs.openjml.rac=assertionerror A

(option D) the output is
1 Exception in thread "main" java.lang.AssertionError: A.java:7: verify: JML

precondition is false
2 m(0); // Precondition error
3 ^
4 A.java:4: verify: Associated declaration: A.java:7:
5 public static void m(int i) {
6 ^
7 at java.base/org.jmlspecs.runtime.Utils.assertionFailureL(Utils.java:99)
8 at A.main(A.java:1)

Finally, if compiled the same way but run with
openjml-java -esa -Dorg.jmlspecs.openjml.rac=javaassert A

(option E) the output is
1 Exception in thread "main" java.lang.AssertionError: A.java:7: verify: JML

precondition is false
2 m(0); // Precondition error
3 ^
4 A.java:4: verify: Associated declaration: A.java:7:
5 public static void m(int i) {
6 ^
7 at java.base/org.jmlspecs.runtime.Utils.assertionFailureL(Utils.java:101)
8 at A.main(A.java:1)

Generally speaking, mechanism (A) or (B) is the easiest and most useful. How-
ever, mechanism (C) is useful for fine-grained control over which assertions are
reported. Different types of violations have different labels, such as Precondition
or Invariant. These labels are the same as the warning categories listed in
Appendix BB.

• If there is a system property org.openjml.exception.label defined
for a given label, then the value of that property is expected to be the
name of a class that is a subtype of java.lang.Error, and an exception
of that class is thrown (if such an exception cannot be created, then an
Error of type org.jmlspecs.utils.JmlAssertionError is thrown.

• If there is no such property defined, then an Error of type

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)76

org.jmlspecs.utils.JmlAssertionError$label is thrown, if that
type exists. Such a class is a nested class defined within
JmlAssertionError and so must be part of the OpenJML runtime li-
brary. Currently only Precondition and PreconditionEntry are de-
fined, but others may be added in the future. All such nested classes are
derived from org.jmlspecs.utils.JmlAssertionError.

• If no such nested class is defined, then an java.lang.Error of type
org.jmlspecs.utils.JmlAssertionError is thrown.

The user may include try-catch blocks to catch particular kinds of assertions.
This may be useful in performing unit tests for example. A particular distinc-
tion useful in automated unit testing is between different kinds of Precondition
violations (cf. §8.3.78.3.7).

8.5 Exit code from a RAC-ed program
A program compiled with runtime assertion checks is supposed to have the same
behavior as the original program except (a) it will emit assertion errors (and
may halt early) and (b) it will likely have different time and space performance.
In particular though, it will emit the same exit code regardless of any runtime
assertion errors.

That is sometimes and sometimes not desirable. Accordingly one can set a prop-
erty to determine the RAC-compiled program’s exit code if assertion errors oc-
cur at runtime and the program is allowed to continue to its normal conclusion
(behavior (A) in the previous section). If the program is run with the property
-Dorg.jmlspecs.openjml.racexitcode set equal to the string representa-
tion of an integer, then that integer will be the program’s exit code if any runtime
assertion errors occur.

To continue the example of the previous section, the input file
1 public class B {
2 public static void main(String ... args) {
3 //@ assert args.length == 2;
4 }
5 }

when compiled with the command
openjml --rac B.java

and run with

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)77

openjml-java -Dorg.jmlspecs.openjml.racexitcode=42 B ; echo $?

produces the output

1 42

If the program is run with two arguments, as in
openjml-java -Dorg.jmlspecs.openjml.racexitcode=42 B 1 2; echo $?

then the assertion succeeds, no test is output, and the exit code is 0.

8.6 RAC FAQs
This is section describes some common problems that users encounter with
OpenJML’s runtime assertion checking.

8.6.1 Uncompiled fields and methods
When model or ghost fields or methods of class B are used by class A and class
A is compiled with RAC, but class B is not, runtime errors will occur. This hap-
pens because the content of B.class is just what is produced by the Java compiler
and does not have any JML fields or methods. No error occurs at compile time
because OpenJML can see the declarations of JML fields and methods in class
B; since Java compilation units (e.g., A and B separately) can be compiled sep-
arately, the system does not know until runtime that B has not been compiled
with JML.

Make an example

8.6.2 Non-executable or unimplemented features
Some JML features are not executable by RAC. One example is a quantified ex-
pression over unrestricted \bigint or \real variables. Also, some JML con-
structs are not implemented. If the OpenJML options are set so that no warnings
are issued about non-executable or not-implemented features, then some de-
fault value is used: expressions typically default to true and clauses typically
default to being ignored. This can cause a difference in behavior between RAC
and ESC and can also cause confusion in users when comparing RAC output to
the JML specifications as written. The recommendation is to always enable the
options --show-not-implemented and --show-not-executable for any crucial or
final or debugging runs of OpenJML.

CHAPTER 8. OPENJML TOOLS — RUNTIME ASSERTION CHECKING (RAC)78

These warnings are not issued everywhere they should be.

8.6.3 Try blocks too large
RAC adds a large amount of assertion checking into a Java method. Conse-
quently some Java implementation limitations can be reached. One such limita-
tion is the size of try blocks. Even methods that do not have try blocks of their
own are wrapped in try blocks by RAC to check for unexpected exceptions.

A future task is to optimize RAC in a way the minimizes the extra overhead,
such as by omitting runtime checks for assertions that are ‘obviously’ (perhaps
easily statically provably) true.

Some tips to avoid this problem are these:

• Keep methods small
• Limit runtime assertions to just those needed to check crucial invariants
and preconditions

• Use the --no-rac-check-assumptions option.

Chapter 9

OpenJML extensions to JML

The 2nd edition of the Java Modeling Language has many additions and dele-
tions compared to JMLv1. Even so, there are language features that were in-
tentionally omitted, primarily because those features deal with proof assistance
rather than specification per se. This chapter describes language features that
OpenJML provides that are not in standard JML.

The grammar of each feature is given in the same style as is used in the JML
Reference Manual 2nd edition.

The --lang option enables a choice among JML language variants. The current
options are --lang=openjml (the default) or --lang=jml. With the latter option,
warnings are given for any feature that is not strict standard JML. These are only
warnings, not errors, unless -Werror is used.

9.1 Specification statements
Specification statements are JML specifications that can be placed where a typ-
ical Java statement would be, in the body of a method or initializer block. Recall
that JML specifies the behavior of methods and classes, and not the details of
method implementations. Any specifications in the body of a method are there
either to aid the verification attempt or to understand the relationship between
specifications and implementation. Hence JML contains only a few very com-
mon specification statements. JML defines these specification statements (cf.
JML Reference Manual v2JML Reference Manual v2):

79

https://www.openjml.org/documentation/JML_Reference_Manual.pdf

CHAPTER 9. OPENJML EXTENSIONS TO JML 80

• assert statement
• assume statement
• block specifications
• loop specifications

Check the above list

OpenJML adds these, described in succeeding subsections:

• check statement (§9.1.19.1.1)
• show statement (§9.1.29.1.2)
• havoc statement (§9.1.39.1.3)
• halt statement (§9.1.49.1.4)
• split statement (§9.1.59.1.5)
• reachable statement (§9.1.69.1.6)

9.1.1 check statement
Grammar:
<jml-check-statement> ::=

check <opt-name><opt-name> <jml-expression><jml-expression> ;

Type checking requirements:

• the <jml-expression><jml-expression> must be boolean

A check statement behaves just like a JML assert statement except for this:
after a check statement, the predicate is not assumed to be true, as it is for an
assert. Thus, in this code fragment

1 // c possibly null
2 //@ check c != null;
3 //@ int i = c.value;

a tool should give two errors: one that the check statement is not provable and
a second that there might be a null-dereference in the c.value expression. In
contrast, if an assert were used instead of the check, there would only be a
verification failure on line 2; after that assert, c != null is presumed to be
true.

A check statement is useful for inquiring about the truth of a given predicate

CHAPTER 9. OPENJML EXTENSIONS TO JML 81

without otherwise disturbing the logic of a program. A check statement is con-
sidered a soft assertion, whereas an assert statement is a hard assertion.

9.1.2 show statement
Grammar:
<jml-show-statement> ::= show <opt-name><opt-name> <jml-expression><jml-expression> ... ;

Type information:
The expressions in the show statementmay have any type other than void.

The show statement is a debugging statement and may be ignored by tools. If
implemented, the expected behavior is this:

• When executed during runtime-assertion-checking, it prints out (as with
System.out.println) the values of the given expressions. As the ex-
pressions may be JML expressions, they are not accessible to debugging
of the Java program itself.

• In static checking, if a proof of a method fails with a counterexample,
then the counterexample contains the values of the show-statement ex-
pressions for inspection, associated with some identifying information.

The show statement provides functionality similar to the \lbl expression, but
more conveniently. As is the case for all JML expressions, the show statement
has no side-effects.

9.1.3 havoc statement
Grammar:
<havoc-statement> ::=

havoc <opt-name><opt-name> <store-ref-expression><store-ref-expression> ... ;

The havoc statement includes a list of <store-ref-expressions><store-ref-expressions>, just like an
assignable clause. The effect of the havoc statement is that all the listed mem-
ory locations are given new values that are arbitrary except that they satisfy the
type and invariant constraints for the type of the memory location. The havoc
statement can be used to simulate an arbitrary input or the effect of a method
call.

CHAPTER 9. OPENJML EXTENSIONS TO JML 82

Here is a simple example. In this code, the assert statements all succeed, ex-
cept the last one. Note that we cannot simply omit the initializers in the variable
declarations because Java requires all variables to be initialized before they are
used; that rule applies to uses in JML statements as well.

1 public class Demo {
2

3 public static void main(String... args) {
4 int i = 0;
5 short s = 0;
6 //@ assert i == 0;
7 //@ havoc i, s;
8 //@ assert Integer.MIN_VALUE <= i <= Integer.MAX_VALUE;
9 //@ assert Short.MIN_VALUE <= s <= Short.MAX_VALUE;
10 //@ assert i == 0; // FAILS
11 }
12 }

In RAC, a havoc statement is ignored, though havoced memory locations may
in the future be initialized with some arbitrary value.

In ESC, at present, the expressions in the havoc statement may not contain
store-ref wildcards.

9.1.4 halt statement
Grammar: <halt-statement> ::= halt <opt-name><opt-name> [;]

A halt statement in the body of a method causes OpenJML to stop translating
statements of the method body. Only implicit or explicit assertions up to the
point of the halt statement will be checked. This statement provides an easy
way to include less or more of the body of a method in the proof attempt, in
order to see where a problem with the proof may lie.

If the method body has various conditional branches or loops, the halt state-
ment only stops translation for the branch in which it appears. To stop process-
ing in all branches, a halt must be placed in each one. On the other hand, by
placing a halt in some but not all branches, one can determine which branches
are successfully proved and which are causing the proof to fail. If the halt

statement is not in a branch, then the postconditions are elided also.

For example, running --esc on this code
1 public class Demo {
2

3 //@ ensures false;

CHAPTER 9. OPENJML EXTENSIONS TO JML 83

4 public static void main(String ... args) {
5 if (args.length == 1) {
6 //@ assert false;
7 }
8 //@ halt;
9 if (args.length == 2) {
10 //@ assert false;
11 }
12 }
13 }

produces
1 Demo.java:6: verify: The prover cannot establish an assertion (Assert) in method

main
2 //@ assert false;
3 ^
4 1 verification failure

Because processing stops with the halt statement, no verification errors are
produced for the second assert statement or the postcondition.

halt statements are ignored when running RAC.

9.1.5 split statement
Grammar:
<split-statement> ::= split <opt-name><opt-name> [<expression><expression>];

Type information: If the optional <expression><expression> is present, it must have boolean
type.

Normally OpenJML constructs a single large verification condition for a method
and submits it to the back-end logic solver. The solver, which is highly optimized,
finds any violations of any assertion in the verification condition. Sometimes
however this VC is just too large and it needs to be broken up into smaller proof
attempts.

One way to break up a proof is to use block specifications, which are part of
standard JMLv2. In one proof the body of a block statement is verified against
its specification and in a second proof the block specification is used as a sum-
mary to shorten the block when the rest of the method body is verified. State-
ment specifications cause splits into subproofs without an explicit split state-
ment.

CHAPTER 9. OPENJML EXTENSIONS TO JML 84

The split statement provides a second way to break up a proof. It can be used
in three situations:

• Just before an if or switch statement

• Just before a loop statement (but after the loop specifications)

• at any statement location if the optional boolean expression is present.

Only in the last case is the optional expression permitted.

The effect of the split statement is to divide the monolithic proof attempt for
a method into multiple proof attempts.

• If the split is before an if statement, then the proof is split in two, one
for each branch of the if; in one proof the then branch is followed, in
the other the else branch is followed. If the if statement is an if-elseif-
else chain, with the statement comprising the else branch being an if

statement itself (and not a block) then the split annotation on the outer
if statement applies to the whole chain.

• If the split is before a switch statement, the proof is split into multiple
subproofs, one for each case of the switch.

• If the split is before a loop, then there are two subproofs, one for the
body of the loop and one for the exit branch. For and while loops can be
split, but do-while loops cannot.

• If the split is a standalone statement with a boolean expression, two
subproofs are constructed, one when the expression is true and one when
it is false.

It is permitted to have multiple split statements in a method body. In that
case, the splits may be multiplicative, depending on where in the control flow
they appear. For example, if there are two consecutive if-statements, each pre-
ceded by a split statement, four different verification conditionswill be created.
On the other hand, if one if-statement is in the then-branch of an enclosing if-
statement, then there will be three proof attempts, for the then-then, then-else,
and else control flows.

Using a split command automates some manual uses of halt commands to
select various control flow branches to test.

CHAPTER 9. OPENJML EXTENSIONS TO JML 85

Here are a set of short examples. Use the command
openjml -esc -progress Demo.java

to see the different proofs.

9.1.5.1 If split

Demo file:
1 public class Demo {
2

3 public static void test(int i) {
4 //@ split
5 if (i > 0) {
6 //@ assert i > 1; // ERROR
7 } else if (i < 0) {
8 //@ assert i < -1; // ERROR
9 } else {
10 //@ assert i == 0; // OK
11 }
12 }
13 }

The output is
1 Proving methods in Demo
2 Starting proof of Demo.Demo() with prover !!!!
3 Completed proof of Demo.Demo() with prover !!!! - no warnings
4 Starting proof of Demo.test(int) with prover !!!!
5 Proof attempt for split A
6 Demo.java:6: warning: The prover cannot establish an assertion (Assert) in method

test
7 //@ assert i > 1; // ERROR
8 ^
9 Result of split A is Not verified
10 Proof attempt for split BA
11 Demo.java:8: warning: The prover cannot establish an assertion (Assert) in method

test
12 //@ assert i < -1; // ERROR
13 ^
14 Result of split BA is Not verified
15 Proof attempt for split BB
16 Result of split BB is Verified
17 Composite result Not verified
18 Completed proof of Demo.test(int) with prover !!!! - with warnings
19 Completed proving methods in Demo
20 2 warnings

There are three subproofs, having the identifiers A, BA and BB.

9.1.5.2 Switch split

Demo file:

CHAPTER 9. OPENJML EXTENSIONS TO JML 86

1 public class Demo {
2

3 public static void test(int i) {
4 //@ split
5 switch (i) {
6 case 0:
7 //@ assert i > 1;
8 break;
9 case 1:
10 //@ assert i == 1;
11 break;
12 default:
13 //@ assert i == 0;
14 }
15 }
16 }

The output is
1 Proving methods in Demo
2 Starting proof of Demo.Demo() with prover !!!!
3 Completed proof of Demo.Demo() with prover !!!! - no warnings
4 Starting proof of Demo.test(int) with prover !!!!
5 Proof attempt for split A
6 Demo.java:7: warning: The prover cannot establish an assertion (Assert) in method

test
7 //@ assert i > 1;
8 ^
9 Result of split A is Not verified
10 Proof attempt for split B
11 Result of split B is Verified
12 Proof attempt for split C
13 Demo.java:13: warning: The prover cannot establish an assertion (Assert) in

method test
14 //@ assert i == 0;
15 ^
16 Result of split C is Not verified
17 Composite result Not verified
18 Completed proof of Demo.test(int) with prover !!!! - with warnings
19 Completed proving methods in Demo
20 2 warnings

A subproof is attempted for each of the three cases of the switch statement.

9.1.5.3 Loop split

Demo file:
1 public class Demo {
2

3 //@ requires 0 <= i;
4 public static void test(int i) {
5 int k = 0;
6 //@ maintaining 0 <= k <= i;

CHAPTER 9. OPENJML EXTENSIONS TO JML 87

7 //@ decreases i-k;
8 //@ loop_modifies k;
9 //@ split
10 while (k < i) {
11 k++;
12 //@ assert 0 <= k <= i; // OK
13 //@ assert k == 0; // ERROR
14 }
15 //@ assert k == i; // OK
16 //@ assert k == 10; // ERROR
17 }
18 }

The output is
1 Proving methods in Demo
2 Starting proof of Demo.Demo() with prover !!!!
3 Completed proof of Demo.Demo() with prover !!!! - no warnings
4 Starting proof of Demo.test(int) with prover !!!!
5 Proof attempt for split A
6 Demo.java:13: warning: The prover cannot establish an assertion (Assert) in

method test
7 //@ assert k == 0; // ERROR
8 ^
9 Result of split A is Not verified
10 Proof attempt for split B
11 Demo.java:16: warning: The prover cannot establish an assertion (Assert) in

method test
12 //@ assert k == 10; // ERROR
13 ^
14 Result of split B is Not verified
15 Composite result Not verified
16 Completed proof of Demo.test(int) with prover !!!! - with warnings
17 Completed proving methods in Demo
18 2 warnings

9.1.5.4 Boolean split

Demo file:
1 public class Demo {
2

3 public static void test(int i) {
4 //@ split i == 1;
5 //@ assert i > 0; // OK for one split, not for the other
6 }
7 }

The output is
1 Proving methods in Demo
2 Starting proof of Demo.Demo() with prover !!!!
3 Completed proof of Demo.Demo() with prover !!!! - no warnings
4 Starting proof of Demo.test(int) with prover !!!!
5 Proof attempt for split A

CHAPTER 9. OPENJML EXTENSIONS TO JML 88

6 Result of split A is Verified
7 Proof attempt for split B
8 Demo.java:5: warning: The prover cannot establish an assertion (Assert) in method

test
9 //@ assert i > 0; // OK for one split, not for the other
10 ^
11 Result of split B is Not verified
12 Composite result Not verified
13 Completed proof of Demo.test(int) with prover !!!! - with warnings
14 Completed proving methods in Demo
15 1 warning

9.1.5.5 Statement spec split

Demo file:
1 public class Demo {
2

3 //@ requires 0 <= n < 100;
4 //@ ensures \result == n*(n-1)/2;
5 public static int test(int n) {
6 int sum = 0;
7 //@ refining
8 //@ assigns sum;
9 //@ ensures sum + sum == n*(n-1);
10 {
11 //@ maintaining 0 <= i <= n;
12 //@ maintaining sum + sum == i * (i-1);
13 //@ loop_assigns sum;
14 //@ decreases n-i;
15 for (int i=0; i<n; i++) {
16 sum += i;
17 }
18 }
19

20 //@ assert sum == n*(n-1)/2;
21 return sum;
22 }
23 }

The output is
1 Proving methods in Demo
2 Starting proof of Demo.Demo() with prover !!!!
3 Completed proof of Demo.Demo() with prover !!!! - no warnings
4 Starting proof of Demo.test(int) with prover !!!!
5 Proof attempt for split A
6 Result of split A is Verified
7 Proof attempt for split B
8 Result of split B is Verified
9 Composite result Verified
10 Completed proof of Demo.test(int) with prover !!!! - no warnings
11 Completed proving methods in Demo

Here the ‘B’ proof is the proof of the body of the statement specification, that

CHAPTER 9. OPENJML EXTENSIONS TO JML 89

is the loop. The ‘A‘ proof summarizes the block containing the loop with just
the statement specification, which states what changed in the block and what
the result of the block’s computation is (i.e. the postcondition) and goes on to
include (and verify) the rest of the method body.

9.1.5.6 The --split option

Each subproof is given a designator consisting of a sequence of uppercase letters.
For example an if-else-statement each branch of which contained another if-
else-statement would spawn four subproofs designated AA, AB, BA, BB, where
the first letter indicates which branch of the first if is followed and the second
letter indicates the branch of the second if. These designators can be used with
the --split command-line option.

For example, the if-split example above (§9.1.5.19.1.5.1 shows three subproofs, labelled
A, BA and BB. The command

openjml -esc -split=BA,BB Demo.java

will attempt just the second and third of these subproofs.

The argument of the --split option is a comma-separated list of such proof desig-
nators. If the argument is an empty string, then all subproofs are attempted.

The negated form, --no-split, takes no argument and disables all the split state-
ments. The split statements are always disabled for RAC.

9.1.6 reachable statement
Grammar:
<jml-reachable-statement> ::= reachable <opt-name><opt-name> [;
]

The reachable statement asserts that there exists a feasible execution path
that reaches this statement.

The examples that follow are explained by the comments:

1 void m1(int i) {
2 //@ assert i == 0; // ERROR: i can be any integer,
3 // not just 0
4 }
5 void m2(int i) {

CHAPTER 9. OPENJML EXTENSIONS TO JML 90

6 if (i > 0) {
7 //@ reachable // OK - reachable in some scenario
8 }
9 }
10 //@ requires i > 0;
11 void m3(int i) {
12 if (i < 0) {
13 //@ reachable //ERROR: not reachable
14 // with precondition and if condition
15 }
16 }

The reachable statement is especially useful for checking the feasibility of a
program, answering questions such as can execution ever go down a certain
execution path; it is also used to check whether the specifications for a method
are accidentally contradictory, inwhich case themethod body is not feasible. For
example, verification of the following code will fail at the reachable statement
because the precondition contradicts the else branch of the if-statement; if the
precondition holds, the else branch will never be executed; consequently the code
within the else branch will not be verified either.

1 //@ requires i > 0;
2 void m(int i) {
3 if (i > 0) { ... }
4 else {
5 //@ reachable
6 throw new RuntimeException("Argument not positive");
7 }
8 }

Reachability testing can be time-consuming, so the default verification does not
check feasibilty. The reachability test is different than verification, requires a
separate formulation and SMT test, and typically requires separate executions
of underlying solvers, as the test is now to find at least one path that reaches
the given statement. If there are multiple reachable statements in a method,
the check is for each one of them individually; they are not required to all be
reachable for the same initial state.

reachable statements are not useful for runtime-checking. At runtime a pro-
gram can only know that it has reached a particular reachable statement

CHAPTER 9. OPENJML EXTENSIONS TO JML 91

(which is a tautology); it cannot know whether other reachable statements are
reachable for other executions of a program. 11

The reachable statement is subject to false positives. A reachable statement’s
success, that is, that the prover says that there is an input state that will bring
about execution of the reachable statement, may be due to over-approximation.
For example, consider

1 //@ ensures i > 0 ==> \result < 0;
2 public static int neg(int i) { return i > 0 ? -i : i; }
3

4 public static void m(int i) {
5 //@ assume i == 1;
6 int j = neg(i);
7 if (j == -2) {
8 //@ reachable
9 }
10 }

In checking method m, we use the specification of neg. By the given specifica-
tion, a return value of -2 from neg is possible, even when the value of i is 1.
Hence the reachable statement is deemed feasible. If a more precise specifica-
tion neg were used, say ensures i > 0 ==> \result == -i, which is still
partially under-specified, then a prover can tell that the reachable statement is
infeasible.

Reachability analysis works with the --check-feasibility option. This option
takes a value that states which locations in a method are to be tested for reach-
ability. Those locations can be explicit, using the reachability statement, or im-
plicit, such as the end of the preconditions or all return statements.

The value of the --check-feasibility option is a comma-separated list of the iden-
tifiers listed below, indicating the corresponding kinds of locations to check:

• reachable – all points in themethod explicitly marked with a reachable
statement

• precondition – at the beginning of the method body; checks whether
there are contradictions in the preconditions and invariants

1A tool could check that across a whole test suite all reachable statements are in fact reached.

CHAPTER 9. OPENJML EXTENSIONS TO JML 92

• assert – just before each explicit assert statement; if the execution path
to the assertion is not feasible, the assertion will never be checked

• assume – just after each explicit assume statement; if the execution path
is not feasible, there is something wrongwith the predicate being assumed
(or something wrong before it)

• return – is every return statement feasible (after computing the return
value)

• throw – is every throw statement feasible (after computing the throw
expression)

• if – are both branches of the if condition feasible
• switch – are all branches of a switch statement feasible
• catch – at the beginning of each catch block
• finally – at the beginning of each finally block
• spec – at the end of every statement spec block
• call – after any call
• halt – at each halt statement
• loopcondition – at the beginning of the loop body
• loopexit – on the exit branch after testing the loop condition
• exit - is it possible to exit the program (either normally or with an excep-
tion)

In addition there are these special identifiers:

• none – no checking; the default
• basic – includes precondition, assert, assume, reachable, exit, halt, and
spec

• all – all the categories listed above
• debug – for debugging OpenJML itself

9.2 Modifiers

9.2.1 skipesc and skiprac
The modifiers skipesc and skiprac are permitted on methods and classes.
Their effect is to turn off any ESC (verification) or RAC compilation (respectively)
for that method or for any method contained within the class (or contained in
nested classes, recursively).

The same effect can be achieved using a --method or --exclude command-line

CHAPTER 9. OPENJML EXTENSIONS TO JML 93

option, but the modifiers allow semi-permanent disabling of, say, verification
attempts of a very-long-to-verify method. Of course, for soundness, one needs
to verify all methods self-consistently eventually.

9.2.2 inline
The inline modifier may be applied to a method that has a body. The effect
is to replace a call to the method with an inlining of its body. In ESC, then,
it serves to eliminate the need for a specification, as the body now serves as
the statement of what the method accomplishes. This is a very basic form of
specification inference and is most applicable to simple methods like getter and
setter methods.

• the inline modifier is only applicable in ESC; it is ignored for RAC and
ewve3ry other operational mode

• the callee method (the onemarked inline) is still verified as usual, ignor-
ing the inline modifier; if it has no explicit specifications, it is verified
against the usual default specifications; a method marked inline typi-
cally, but not necessarily, has no explicit specification

• the caller checks any explicitly given specifications of the callee (such as
explicit requires clauses) but also inlines the body of the callee; the effect
is that the body serves as amodel program (though it is interpreted as Java
code, not JML statements)

• An inline method must be final; a final modifier may be added in
JML.

For example, with the code
1 public class Demo {
2

3 //@ inline final
4 public void callee(int i) {
5 //@ assert i > 0;
6 }
7

8 public void caller() {
9 callee(10);
10 callee(-10);
11 }
12 }

OpenJML produces the output

CHAPTER 9. OPENJML EXTENSIONS TO JML 94

1 Demo.java:5: verify: The prover cannot establish an assertion (Assert) in method
callee

2 //@ assert i > 0;
3 ^
4 Demo.java:5: verify: The prover cannot establish an assertion (Assert: Demo.java

:10:) in method caller
5 //@ assert i > 0;
6 ^
7 Demo.java:10: verify: Associated declaration: Demo.java:5:
8 callee(-10);
9 ^
10 3 verification failures

The first verification failure message is the failure to verify the assert when
checking the calleemethod. The second failure indicates a failure of the assert
statement when it is inlined in place of callee(-10), as indicated by the ‘As-
sociated declaration‘ message. There is no failure of the assert statement when
it is inlined in place of callee(10). Without the inline modifier, caller
would verify without error.

9.2.3 query and secret
These are experimental modifiers in OpenJML used to specify observational pu-
rity and hidden state.

Probably write a full concept section on observational purity

9.2.4 immutable
Some Java classes, such as Integer and String, create immutable objects: once
an instance is constructed, it cannot be changed. All methods have no side-
effects and there are no fields to be assigned.

This is the intent of the immutable modifier — to mark such kinds of classes.
However sufficient questions remain so that this is still an experimental feature
under discussion.

• Is the immutability shallow or deep? That is, if an immutable object cap-
tures other objects, which are then part of its representation, must those
objects in turn be immutable?

• What if a method (m(T t))) of the immutable object calls methods of its
arguments (T.p() which do have side effects somewhere? Then m itself

CHAPTER 9. OPENJML EXTENSIONS TO JML 95

cannot be pure.

• Must immutable classes be final? Or is immutability inherited?

• May immutable classes be derived from non-immutable parents? Then
the immutable class might have mutable fields?

• The Object class might have mutable ghost fields, like owner. Should that
prevent any Java class from being declared immutable? Even what seem
like obvious candidates like Integer?

So at present, although immutable is a recognized modifier on a class, it does
not imply any particular behavior or obligations.

9.2.5 @Options
The @Options annotation can annotate a class, interface, or method declara-
tion. The effect is to have any command-line options present in the argument
of the annotation be applied to the method or to all the methods (recursively)
contained within the given class or interface declaration.

The argument of the @Options annotation is either a String literal or a brace-
enclosed, comma-separated list of String literals, as in either

@Options("--esc-max-warnings=1")

or
@Options("-esc-max-warnings=1","-check-feasibility=basic").
For this feature, only the annotation @Options can be used, not a simple mod-
ifier (i.e., options). However, @Options(...) may be placed within JML an-
notation text so it does not affect the Java program:

1 //@ @Options("--esc-max-warnings=1")
2 public void m() { ... }

OnlyOpenJML (not OpenJDK) optionsmay be applied in this way, and only those
whose effect is directly on the ESC or RAC translation of the method. For exam-
ple, --specspath is used during parsing and typechecking, and so would not
be allowed to be applied to a method in this way.

CHAPTER 9. OPENJML EXTENSIONS TO JML 96

9.2.6 Experimental modifiers
Some othermodifiers are under discussion, but not yet implemented inOpenJML.
These include

• two_state
• strictly_pure
• infer

9.3 Expressions

9.3.1 \exception
Just as \result is an expression that denotes, in an ensures postcondition,
the value returned by a return statement, \exception denotes the excep-
tion thrown on exit from a method. Although in a signals clause, there al-
ready is a variable declared representing the exception, that is not true of other
clauses that are evaluated in an exceptional postcondition, such as duration
and working_space.

The expression \exception

• is null in a normal exit from the method
• has type java.lang.Exception except in a signals clause, where it
has the same type as the declared variable

9.3.2 Enhancements to conditional annotations: \key
Besides the conditional annotation syntax described in §4.54.5, OpenJML also allows
the following.

• In expressions, the term \key(id), is either a true or false Boolean literal,
depending on whether the given id is defined as a conditional annotation
key or not. The id is a comma-separated list of simple identifiers and a
string literals, though almost always just one. If there is more than one,
the expression is true iff all of the identifiers are defined. The keys here
are the same keys as are used in §4.54.5, defined in the same way with the
--keys option. A \key expression may be combined in larger expressions
just like any other boolean subexpression. The substitution of a boolean
literal for the \key term takes place during parsing.

CHAPTER 9. OPENJML EXTENSIONS TO JML 97

Here is an example of the \key notation:
1 public class Demo {
2

3 public static void test() {
4 //@ assert \key("OPENJML",ESC); // OK when run in OpenJML and --esc
5 //@ assert \key(A); // OK if A is defined as a key, ERROR otherwise
6 }
7 }

The command openjml -esc Demo.java produces
1 Demo.java:5: verify: The prover cannot establish an assertion (Assert) in method

test
2 //@ assert \key(A); // OK if A is defined as a key, ERROR otherwise
3 ^
4 1 verification failure

However, the command openjml -esc -keys=A Demo.java verifies both
assert statements.

9.4 Enhancements to the maps clause
In OpenJML, the maps clause allows a comma-separated list of storeref expres-
sions, not just one. That is the grammar is

<maps-clause> ::=
maps <storeref><storeref> ... \into <identifier><identifier> ... ;

9.5 Other topics to include, possibly
TODO

reasoning about captured objects (including capture modifier)

non_null_elements

adding specification types

post for old/pre declarations in specifications

\nonnullelements for collection classes

specification of lambda functions

begin end markers

CHAPTER 9. OPENJML EXTENSIONS TO JML 98

inline_loop

\values

\reach

multiple arguments for \invariant_for, \static_invariant_for

invariants method spec clause

use of for_example as feasibility

recommends-else

expanded array-range syntax; store-refs that include expressions

allow optional semicolons

functional form of \lbl

control of invariants

Chapter 10

Extending OpenJML

This chapter is barely started.

10.1 Basic Concepts

10.2 Organization ofOpenJDKandOpenJML im-
plementation

OpenJML is designed (though somewhat incompletely as yet) to be extendable
without too much major surgery on the implementation. All the JML clauses,
modifiers, types and the like are defined in extension files. These files must be
compiled and combined with the build of OpenJML, perhaps as a library, but they
will need to inherit from portions of the existing implementation. The process
for adding new features is described in the sections of this chapter.

The user-supplied extension files do need to be found by OpenJML when it starts.
These files can be placed directly in the org.jmlspecs.openjml.ext pack-
age and folder and compiled with the rest of OpenJML, or they can be compiled
separately and linked in as part of teh calss path. If they are in a different pack-
age than org.jmlspecs.openjml.ext, OpenJML must be told what package
they are in via the --extensions command-line option (which can also be defined
in a properties file, cf. §4.34.3).

TODO- stuff to write, examples to give

99

CHAPTER 10. EXTENDING OPENJML 100

10.3 Adding command-line options

10.4 Adding modifiers

10.5 Adding statement specification clauses

10.6 Adding method specification clauses

10.7 Adding class specification clauses

10.8 Adding built-in types

Chapter 11

Other OpenJML tools

11.1 Inferring specifications
This section will expanded in the future.

The ability to infer specifications, saving the work of writing them, is an antici-
pated addition to OpenJML.

Specifications can only be inferred accurately in limited situations. At present
specifications are inferred in the situations described in the following subsec-
tions.

Need to implement and add information about how to inform user of spec in-
ferences

11.1.1 loop_modifies clauses
The loop_modifies clause, if absent from a loop specification, is inferred by
analyzing the pattern of assignments in the loop body. The inferred set of stor-
erefs always includes the loop index from a for statement or the implied loop
index for an enhanced for statement. Also the JML identifier \count is always
included.

Other examples

101

CHAPTER 11. OTHER OPENJML TOOLS 102

11.2 Generating Documentation
This section will be added later.

11.3 Generating Specification File Skeletons
This section will be added later.

11.4 Generating Unit Test framework
This section will be added later.

11.5 Generating Test Cases
This section will be added later.

11.6 Symbolic Execution and Abstract Interpre-
tation

This section will be added later.

Chapter 12

Limitations of OpenJML’s
implementation of JML

12.1 Soundness and Completeness
Much is made of the soundness and completeness claims of program analysis
tools. In fact programs verifiers and bug finding tools use the terms soundness
and completeness in different ways. One way to think about this question is in
terms of the guarantees that a tool claims to make.11 A tool can be said to be
sound if the guarantee it makes actually holds. It is complete if it identifies all
situations in which its guarantees do not hold. Consider the partitioning of the
space of actions and results of tools shown in Fig. 12.112.1 from the points of view
of bug-finding tools and deductive verification tools.

Bug-finders Users looking for bugs waste time analyzing bug reports that are
not actual bugs; that is, they want Q2 in Fig. 12.112.1 to be empty, ideally. They are

1Gary leavens suggested this approach to me

P has a bug at L P does not have a bug at L
T reports a bug at L Q1 Q2

T does not report a bug at L Q3 Q4

Figure 12.1: Combinations of the behavior of a program P and tool T concerning
a bug at program location L

103

CHAPTER 12. LIMITATIONS OF OPENJML’S IMPLEMENTATION OF JML 104

not so concerned that all bugs are reported (that is, that Q3 is empty); rather
they need to find and fix the most bugs of consequence in a fixed amount of
time[2929, 1919, 2020]. Consequently the soundness goal for a bug-finder is this: any
reported bug is a true bug (Q2 is empty). A secondary goal is completeness: all
bugs are found (Q3 is empty).

Program verifiers A program verifier, on the other hand is concerned that all
bugs are reported, even if some of them, because of limitations of the tools, are
not real bugs. The soundness claim for a program verifier is all actual bugs are
reported by the tool. That is, Q3 is empty. A secondary goal is completeness: all
bugs reported are actual bugs (Q2 is empty).

Tools cannot achieve both soundness and completeness. In practice some trade-
off between them is necessary in practical and usable tools. A bug-finder could
report no bugs and be 100% sound, but also totally incomplete and thus unus-
able; it could report bugs everywhere and be 100% complete, but unsound and
also unusable. Some researchers have advocated considering soundiness[2727]:
recognizing that tools cannot be completely sound and carefully describing in
what ways they are not. Practioners are then aware of the capabilities and lim-
itations of a tool.

In particular program verifiers typically analyze only a portion of the program-
ming language they address. They may be sound for that portion, but they are
not then sound for the whole language, unless they report a warning for any
feature present that is only approximately analyzed; in that case the feature is
an incompleteness. If most programs contain unimplemented features then the
tool becomes much less usable, as unimplemented features may cause signifi-
cant swaths of a program to be unanalyzed.

OpenJML aspires to be a program verifier for Java, so an important limitation is
that it does not analyze all of Java. It does intend to warn the user of any feature
in the target program that is not supported and to progressively work to imple-
ment missing features. Nevertheless we wish to be clear about what aspects of
a program contribute to unsoundness or incompleteness in its goal of reporting
all bugs in a program, interpreted as inconsistencies between a program and its
specifications. (The question of whether a consistent combination of specifica-
tion and implementation actually matches the users’ intent and expectation of a
program, that is, whether safety, security and correctness are actually achieved
by the specification, is left to other, human, processes.)

CHAPTER 12. LIMITATIONS OF OPENJML’S IMPLEMENTATION OF JML 105

Note at the start that all tools suffer from this potential unsoundness: tools may
have bugs in them that lead to missing actual errors. And little of sophisticated
program analysis tools are actually verified themselves.

12.2 Java and JML features not implemented in
OpenJML — General issues

Currently OpenJML does not completely implement JML or Java. The differences
are enumerated in the remainder of this chapter. Gaps in representing Java re-
duce soundness, as bugs in unanalyzable parts of a program are not found; gaps
in implementing JML are a completeness issue as they reduce the expressive-
ness of the portion of JML that OpenJML can use, thereby reducing the ability
to prove that a construct is correct and increasing the number of non-bugs re-
ported.

12.2.1 Non-conservative defaults
More - particularly about binary files

12.2.2 Unchecked assumptions
JML allows the introduction of unchecked assumptions as assume statements
and axioms, and it allows analyzing only a portion of a program using the halt
statement. It is, however, straightforward to be sure that in a final verification,
no such statements are present.

12.2.3 Verification of Java system libraries
To have a fully sound verification, all classes and methods used in a program
must be verified. A typical program uses classes from the JDK (at least Object).
These are not verified. Though one might hope that they are in the future, the
effort to do so would be very substantial and likely require tools with capabilities
more than OpenJML. Errors in the (only manually reviewed) JML specifications
for the JDK are a soundness risk in verifying Java programs.

CHAPTER 12. LIMITATIONS OF OPENJML’S IMPLEMENTATION OF JML 106

12.2.4 Java Errors
JML and OpenJML make no claims about programs that throw Java Errors, like
OutOfMemoryError, whether they are caught and handled internally or
whether they cause a program abort. For example, a program might be able
to be specified and verified that it never crashes with an Exception, but the
same cannot be said for an Error.

12.2.5 Non-sequential Java
JML makes no claims to specify non-sequential Java. Likely, JML needs addi-
tional capabilities to do so effectively. There are some language features that
are the start of such support: monitored_for, monitored, and operations on
sets of locks (\lockset and \max).

12.2.6 Reflection
JML does not provide language features to specify or reason about reflection.

12.2.7 Class loading
JML does not provide language features to specify or reason about class load-
ing.

12.2.8 Modules and annotation processing
OpenJML does not implement anything special for either Java modules or Java’s
annotation processing. Nor does JML define any behavior regarding these Java
features.

12.3 Java and JML features not implemented in
OpenJML — Detailed items

Also discuss – static initialization,

CHAPTER 12. LIMITATIONS OF OPENJML’S IMPLEMENTATION OF JML 107

12.3.1 Clauses and expressions
These JML features are parsed and typechecked but not otherwise implemented
in either ESC or RAC.

• \only_assigned

• \only_accessed

• \only_captured

• \only_called

• \only_assigned

• duration

• working_space

• \duration

• \working_space

• \space

12.3.2 Termination
OpenJML does prove termination of loops, but it does not yet prove termination
of recursive or mutually recursive calls. This requires working out the usability
and semantics of the measured_by clause and default well-founded measures
for termination.

12.3.3 Redundancy
OpenJML does not fully implement the redundancy features of JML. OpenJML
currently

• treats the redundant keywords precisely like their non-redundant coun-
terparts and

• ignores the implies_that and for_example specification cases.

12.3.4 Arithmetic mode
• OpenJML does not implement code_bigint_math

• OpenJML does not consistently implement floating point mathematics

• OpenJML does not interpret the strictfp Java modifier, though when
floating point is supported, it will only be for strictfp (that is IEEE 754

CHAPTER 12. LIMITATIONS OF OPENJML’S IMPLEMENTATION OF JML 108

compliant) calculations.

12.3.5 Quantifiers
OpenJML does not support the \sum, \product, and \num_of quantifiers, nor
the set comprehension expression.

12.3.6 Static initialization
Verification of reentrant static initialization and the uninitialized keyword
is not yet completed.

12.3.7 model import statement
OpenJML currently translates a JML model import statement into a regular Java
import statement. Consequently, names introduced in a model import state-
ment are visible in both Java code and JML annotations. This has consequences
in the situation in which a name is imported both through a Java import and
a JML model import. Consider the following examples of involving packages a
and b, each containing a class named X.

In these two examples,

1 import a.X;
2 //@ model import b.X;

1 import a.*;
2 //@ model import b.*;

the class named X is imported by both an import statement and a model import
statement. In JML, the use of X in Java code unambiguously refers to a.X; the
use of X in JML annotations is ambiguous. However, in current OpenJML, the use
of X in both contexts will be identified as ambiguous.

In

1 import a.*;
2 //@ model import b.X;

CHAPTER 12. LIMITATIONS OF OPENJML’S IMPLEMENTATION OF JML 109

a use of X in Java code refers to a.X and a use in JML annotations refers to b.X.
However, in current OpenJML, both uses will mean b.X.

However,

1 import a.X;
2 //@ model import b.*;

is unproblematic. Both JML and OpenJML will interpret X as a.X in both Java
code and JML annotations.

12.3.8 Model programs
OpenJML only partially implements model programs, which includes these fea-
tures of JML:

• the extract modifier and clause
• the choose clause
• the choose_if clause
• the or clause
• the returns clause
• the breaks clause
• the continues clause

12.3.9 Universe types
OpenJML does not implement JML’s Universe types, including readonly, peer,
rep, \readonly, \peer, \rep.

Chapter 13

Contributing to OpenJML

Up to date information for OpenJML developers is found on the OpenJML GitHub
wiki, at https://github.com/OpenJML/OpenJMLhttps://github.com/OpenJML/OpenJML. Here we give an outline of the rel-
evant topics, but do not describe them in detail, so as not to repeat information
which is more easily kept up to date on line.

The source programming language for OpenJML is Java. OpenJML builds on the
OpenJDK reference java compiler (https://openjdk.java.nethttps://openjdk.java.net).

13.1 GitHub
The GitHub project named OpenJML (github.org/OpenJMLgithub.org/OpenJML) holds a number of
related repositories (some of them no longer maintained):

• OpenJML: contains the core software for OpenJML, including the modified
OpenJDK and the tests. The relevant top-level directories in this repo are

– OpenJDKModule

– OpenJMLTest

– The other top-level folders are no longer used
• JMLAnnotations: the source for the org.jmlspecs.annotation pack-
age

• Specs: the source for the JML specifications for the Java system library
classes

• Solvers: binary instances of SMT solvers that are released withOpenJML.

110

https://github.com/OpenJML/OpenJML
https://openjdk.java.net
github.org/OpenJML

CHAPTER 13. CONTRIBUTING TO OPENJML 111

• openjml.github.io: the repository holding the material for the Open-
JML website at www.openjml.orgwww.openjml.org, including the tutorial material.

Other important materials that should be maintained and improved:

• A wiki describing how to create and use a development environment for
OpenJML (https://github.com/OpenJML/OpenJML/wikihttps://github.com/OpenJML/OpenJML/wiki)

• The issue reporting tool for recording and commenting on bugs or desired
features (https://github.com/OpenJML/OpenJML/issueshttps://github.com/OpenJML/OpenJML/issues)

• The https://github.com/JavaModelingLanguage/RefManhttps://github.com/JavaModelingLanguage/RefMan repository, which con-
tains discussions of the definition and semantics of JML, is more closely
related to JML itself, but is very relevant to the ongoing development of
OpenJML.

These repositories are out of date (and may be deleted from the HEAD of the
repository):

• OpenJMLDemo: demo material for OpenJML
• OpenJML-UpdateSite: the update site for the Eclipse plug-in
• SMTSolvers: an Eclipse feature plug-in containing the Solvers project, so
the solvers can be distributed through an update site

• jdk8u-dev-langtools: an obsolete snapshot of the OpenJDK8 sources
• try-openjml
• OpenJMLFeature

• openjml-installer

13.2 User documentation
User-facing documentation consists of the following:

• The github-pages website accessible at www.openjml.orgwww.openjml.org, which includes
descriptive information (e.g., how to install) and a tutorial. The sources for
this set of web pages are in the openjml.github.io repo listed above.

• This document, the OpenJML User’s Guide. This is a LaTeX document
maintained in OverLeaf, with pdfs distributed with OpenJML releases. You
may need an invitation to have access to the LaTeX source material.
(https://www.overleaf.com/project/620c2512d552cc226f5f4c94https://www.overleaf.com/project/620c2512d552cc226f5f4c94)

• The JML Reference Manual is an endeavor independent of but closely re-

www.openjml.org
https://github.com/OpenJML/OpenJML/wiki
https://github.com/OpenJML/OpenJML/issues
https://github.com/JavaModelingLanguage/RefMan
www.openjml.org
https://www.overleaf.com/project/620c2512d552cc226f5f4c94

CHAPTER 13. CONTRIBUTING TO OPENJML 112

lated to tool projects like OpenJML. It is maintained in Overleaf at
https://www.overleaf.com/project/5ceee26404c2854a1590029fhttps://www.overleaf.com/project/5ceee26404c2854a1590029f

The domain namewww.openjml.orgwww.openjml.org is currentlymaintained atNameCheap.

13.3 Maintaining the development wiki
The development wiki at https://github.com/OpenJML/OpenJML/wikihttps://github.com/OpenJML/OpenJML/wiki is a native
GitHub wiki. Its intention is to record the processes and policies followed in
OpenJML development. Changes to the infrastructure should be recorded here,
sufficient to allow new developers to create a correct development environment,
run tests, create releases on GitHub, etc.

13.4 Issues
Bugs, new feature requests, user problems and the like are recorded in theGitHub
Issues tool for the project (https://www.github.com/OpenJML/OpenJML/issueshttps://www.github.com/OpenJML/OpenJML/issues). The
issues list is somewhat polluted by issues imported from the old Sourceforge site,
but those that do not concern OpenJML are all more than a decade old and have
been closed on that account. This list is the record of questions, bugs and of
some of the feature requests.

OpenJML does not use the project management features of GitHub.

13.5 Creating and using a development environ-
ment

13.5.1 Setup
The instructions for creating a development environment are on the wiki at
https://github.com/OpenJML/OpenJML/wiki/OpenJML-Development-Environment-Setuphttps://github.com/OpenJML/OpenJML/wiki/OpenJML-Development-Environment-Setup.
The process is to clone several GitHub repos in sibling folders.

13.5.2 Building OpenJML
The build instructions are at
https://github.com/OpenJML/OpenJML/wiki/Building-OpenJMLhttps://github.com/OpenJML/OpenJML/wiki/Building-OpenJML.

https://www.overleaf.com/project/5ceee26404c2854a1590029f
www.openjml.org
https://github.com/OpenJML/OpenJML/wiki
https://www.github.com/OpenJML/OpenJML/issues
https://github.com/OpenJML/OpenJML/wiki/OpenJML-Development-Environment-Setup
https://github.com/OpenJML/OpenJML/wiki/Building-OpenJML

CHAPTER 13. CONTRIBUTING TO OPENJML 113

The build is Makefile-driven, using modest additions to the OpenJDK Makefile.
The Makefile is in the OpenJDKModule folder:

• make openjml builds the executables

• make release builds a trial release

• make release-test runs a smoke test on the most recent trial release
build

There are three relevant files produced and placed in OpenJDKModule:

• openjml – the OpenJML tool (an enhancement of javac)

• openjml-java – an enhancement of java, which includes the runtime
libraries needed for running RAC-compiled executables

• jmlruntime.jar – the runtime library needed to execute RAC-compiled
files with standard java (not needed when running with openjml-java)

13.6 Running tests
The tests are organized as unit and functional tests in the OpenJMLTest folder.
The Makefile at the top-level of that folder has these relevant targets:

• make openjml – builds the executables

• make openjml-test – runs all the tests, which takes about TBD min-
utes. Thus it is often more convenient to run different sections of tests
separately or in parallel.

• make release – makes a trial release

• make release-tests – runs the smoke test that check a release (on the
most recently built trial release)

• make unittests-par – runs the unit tests (usingmultiple threads). These
tests are classic JUnit5-style tests

• make script-tests – runs all the file type tests. These tests consist of
one or more .java files, a configuration script, and expected output

• make tutorial-tests – checks all the tutorial examples

CHAPTER 13. CONTRIBUTING TO OPENJML 114

• make userguide-tests – checks all the examples in the user guide

13.7 Deploying a release
Releases of OpenJML are built and deployed through GitHub, using GitHub ac-
tions. The description of the release process is maintained here:
https://github.com/OpenJML/OpenJML/wiki/CreatingReleaseshttps://github.com/OpenJML/OpenJML/wiki/CreatingReleases.

The OpenJML repo has a master-module branch. Development work is per-
formed on the development-module branch. Once a release candidate is ready,
it is merged into the local master-module branch and tested there. When
ready, it is pushed to GitHub. The git push automatically initiates a work-
flow action that then builds OpenJML for Mac and Ubuntu platforms, performs
quick tests on those releases, constructs release zip files and creates a public
release on GitHub.

The human in charge of the release need only verify that the release built and
deployed successfully, edit the release notes, and then "publish" the release on
GitHub.

13.8 Updating to newer versions of OpenJDK
As newer versions of Java are defined and corresponding releases of OpenJDK
are available, one needs to merge the changes in OpenJDK into the OpenJML
source. The process is a bit complex and can involve significant manual labor
and debugging. It essentially consists of these steps.

• Within the OpenJML repo, on the openjdk-src branch, copy the source
code for the new OpenJDK such that the HEAD of the branch is a faithful
copy (with all additions, modifications, and deletions) of the new version
of the OpenJDK source. A diff between a copy of OpenJDK and the HEAD
of the branch should produce no consequential differences.

• On a new working branch off of a fully working version of OpenJML on
the development-module branch, merge openjdk-src into that new
branch.

• In practice (in the past), considerable review of the changes produced by
that merge, as well as resolution of many merge conflicts, is needed to

https://github.com/OpenJML/OpenJML/wiki/CreatingReleases

CHAPTER 13. CONTRIBUTING TO OPENJML 115

generate a new working version of OpenJML consistent with the new ver-
sion of OpenJDK.

• When OpenJML is again working satisfactorily, merge it back to
development-module and to master-module and generate a new re-
lease of the updated version of OpenJML.

Appendix A

Command-line options

These tables reproduce for convenience Tables 5.15.1 and 5.25.2 in the body of the
text.

Options inherited from OpenJDK
See the Java documentation for more detail

@<filename> read options from a file. This is implemented only for Java op-
tions, not OpenJML options

-Akey options to pass to annotation processors
--add-modules <modulelist> [§5.105.10] see Java documentation re modules
-bootclasspath <path> See Java documentation
--boot-class-path <path>
-cp <path>
-classpath <path> [§4.24.2] location of input class files
--classpath <path>
-d <directory> location of output class files
-deprecation warn about use of deprecated features
--enable-preview enables preview language features
-encoding <encoding> character encoding used by source files
-endorsedirs <dirs> see Java documentation
-extdirs <dirs> see Java documentation
-g generate debugging information
-h <directory> location of generated header files
-?
-help [§5.55.5] output (Java and JML) help information
--help
--help-extra [§5.55.5] help about extra options

116

APPENDIX A. COMMAND-LINE OPTIONS 117

Options inherited from OpenJDK (cont.)
See the Java documentation for more detail

-implicit whether or not to generate class files for implicitly referenced
classes

-J<flag> flags for the runtime system
--limit-modules <modulelist> [§5.105.10] see Java documentation re modules
-m <modulelist> [§5.105.10] see Java documentation re modules
--module <modulelist>
--module-path <path> [§5.105.10] see Java documentation re modules
--module-source-path <path> [§5.105.10] see Java documentation re modules
--module-version <version> [§5.105.10] see Java documentation re modules
-nowarn [§5.55.5] show only errors, no warnings
-p <path> [§5.105.10] like --module-path see Java documentation re modules
-parameters see Java documentation
-proc see Java documentation re annotation processing
-processor <classes> see Java documentation re annotation processing
--processor-module-path <path> see Java documentation re annotation processing
-processorpath <path> where to find annotation processors
--processor-path <path>
-profile see Java documentation
--release <release> target release for compilation
-s <directory> location of output source files
-source <release> the Java version of source files
--source <release>
-sourcepath <path> [§4.24.2] location of source files
--source-path <path>
--system <jdk> see Java documentation
-target <release> the Java version of the output class files
--target <release>
--upgrade-module-path <path> [§5.105.10] see Java documentation re modules
-verbose [§5.55.5] verbose output for Java compiler only, not OpenJML

-version [§5.55.5] output (OpenJML) version
--version
-X [§5.55.5]Java non-standard extensions
-Werror [§3.43.4]treat warnings as errors

Table A.1: OpenJML options inherited from Java. See the text for more detail on
each option.

APPENDIX A. COMMAND-LINE OPTIONS 118

Options specific to JML
Options indicated with [-]-<name> may be spelled
with either one or two hyphens, with two preferred

--arithmetic-failure <mode> [§4.10.14.10.1] sets the mode for arithmetic checks: hard, soft (the
default) or quiet

[-]-check [§5.35.3] typecheck only (--command=check)
--check-accessible [§7.3.4.17.3.4.1] whether to check accessible clauses (default: true)
-checkAccessible
[-]-check-feasibility <list> [§7.27.2] kinds of feasibility to check
-checkFeasibility <list>
[-]-check-specs-path [§4.24.2] warn about non-existent specs path entries
-checkSpecsPath
[-]-code-math <mode> [§4.104.10] arithmetic mode for Java code (default: safe)
[-]-command <action> [§5.35.3] which action to do: check esc rac compile, default

is check
[-]-compile [§5.35.3] typecheck JML but compile just the Java code

(--command=compile)
[-]-counterexample [§7.3.57.3.5] show a counterexample for failed static checks
-ce
[-]-defaults <list> enables various default behaviors TBD
[-]-determinism EXPERIMENTAL: ???
--dir <dir> [§5.45.4] argument is a folder or file; enables processing all .java

files in a folder
--dirs [§5.45.4] subsequent arguments are folders or files (until an argu-

ment is an option)
[-]-esc [§5.35.3] do static checking (--command=esc)
--esc-bv [§4.114.11] whether to use bit-vector arithmetic (default: auto)
-escBV
--esc-max-warnings <n> [§7.3.57.3.5] max number of verification errors to report in -esc
-escMaxWarnings
–esc-max-warnings-path TBD? KEEP THIS?
-escMaxWarningsPath
[-]-exec <file> [§7.3.27.3.2] file path to prover executable
[-]-exclude <patterns> [§7.3.37.3.3] paths to exclude from verification
[-]-extensions <classes> [§1010] comma-separated list of extensions classes and packages
[-]-inline-function-literal EXPERIMENTAL ?
-java [§5.35.3] use the native OpenJDK tool
-jml [§5.35.3] process JML constructs
-jmldebug [§5.55.5] very verbose output (includes -progress)

(--verboseness=4)
[-]-jmltesting changes some behavior for testing (default: false)
[-]-jmlverbose [§5.55.5] JML-specific verbose output (--verboseness=3)
[-]-keys [§4.54.5] define keys for optional annotations
[-]-lang <language> [§99] the JML variant to use

APPENDIX A. COMMAND-LINE OPTIONS 119

Options specific to JML (cont.)
Options indicated with [-]-<name> may be spelled
with either one or two hyphens, with two preferred

[-]-logic <name> [§7.3.27.3.2] name of SMT logic to use (default: ALL)
[-]-method <patterns> [§7.3.37.3.3] methods to include in verification
--nonnull-by-default [§5.45.4] values are not null by default
-nonnullByDefault
[-]-normal [§5.55.5] only outputs errors; no pother progress information

(--verboseness=1)
--nullable-by-default [§5.45.4] values may be null by default
-nullableByDefault
[-]-os-name <name> [§7.3.27.3.2] Operating System name to use in selecting prover (de-

fault: "" (auto), or one of macos, linux, windows)
[-]-progress [§5.55.5] outputs errors, warnings, progress and summary infor-

mation (--verboseness=2)
[-]-properties <file> [§4.34.3] property file to read (value required)
[-]-prover <name> [§7.3.27.3.2] prover to use (default: z3-4.3)
-purityCheck [§5.45.4] check for purity
[-]-quiet [§5.55.5] no informational output (--verboseness=0)
[-]-rac [§5.35.3] compile runtime assertion checks (--command=rac)
--rac-check-assumptions [§8.3.48.3.4] enables (default on) checking assume statements
-racCheckAssumptions as if they were asserts
--rac-compile-to-java-assert [§8.3.68.3.6] compile RAC checks using Java asserts
-racCompileToJavaAssert
--rac-java-checks [§8.3.58.3.5] enables (default on) performing JML checking
-racJavaChecks of violated Java features
–rac-missing-model-field-rep-
source

TBD

-racMissingModelFieldRepSource
–rac-missing-model-field-rep-
binary

TBD

-racMissingModelFieldRepBinary
--rac-precondition-entry TBD
-racPreconditionEntry
--rac-show-source [§8.3.38.3.3] includes source location in RAC assertion failure mes-

sages
-racShowSource
[-]-require-white-space [§6.16.1] whether white space is required after an @ (default:

false)
[-]-show [§5.55.5] prints the details of source transformation (default:

false)
--show-not-executable [§8.3.18.3.1] warn about features not executable, in --rac operations
-showNotExecutable (default: TBD)
--show-not-implemented [§5.45.4] warn about features not implemented

APPENDIX A. COMMAND-LINE OPTIONS 120

Options specific to JML (cont.)
Options indicated with [-]-<name> may be spelled
with either one or two hyphens, with two preferred

-showNotImplemented (default: TBD)
--silent [§5.55.5] turns off all (error, warning, informational) output ex-

cept the error code (--verboseness=-1)
--show-skipped [§7.3.37.3.3] showmethodswhose proofs are skipped (default: true)
-skipped
--smt filename [§7.3.97.3.9] where to write generated SMT files (for off-line use or

inspection)
[-]-solver-seed [§7.3.97.3.9] seed to pass on to the SMT solver (default: 0 - no seed)
[-]-spec-math <mode> [§4.104.10] arithmetic mode for specifications (default: bigint)
--specs-path [§4.24.2] location of specs files
-specspath
[-]-split [§9.1.5.69.1.5.6] splits proof of method into sections
--stop-if-parse-errors [§6.16.1] stop if there are any parse errors
-stopIfParseErrors (don’t do type checking or verification attempts)
-staticInitWarning TBD
[-]-subexpressions [§7.3.57.3.5] show subexpression detail for failed static checks (de-

fault: false)
[-]-timeout <seconds [§7.3.97.3.9] timeout for individual prover attempts (default: TBD)
[-]-trace [§7.3.57.3.5] show a trace for failed static checks (default: false)
[-]-triggers enable SMT triggers (default: true)
-typeQuants TBD
[-]-verboseness <n> [§5.55.5] level of verboseness (0=quiet .. 4=jmldebug) (default: 1,

-normal)
[-]-verify-exit <n> [§7.3.97.3.9] exit code for verification errors (default: 6)
[-]-warn <list> [§5.85.8] comma-separated list of warning keys (default: no keys)

Table A.2: OpenJML options. See the text for more detail on each option.

Appendix B

Static and Runtime verification
failure examples

This Appendix lists, in tables below, the various kinds of verification failures
that OpenJML detects. Subsequent subsections provide examples of the most
common of these. The table entries contain links to the appropriate example
subsection.

To simplify language, the descriptions of failures may say that a failure is issued
when a particular condition is false. In RAC this is the case: the assertion is
found to be false in the particular execution of the program. For ESC, it is more
accurate to say that OpenJML could not establish that the condition is always
true; there may be a counterexample, but it may also be that the necessary proof
is too complex for the prover.

121

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 122

B.1 Tables
The various warnings issued by ESC or RAC are grouped into categories to make
them easier to understand.

• Assertions or verification conditions generated by the semantics of Java
and JML are reported by either ESC or RAC. These are listed in Table B.1B.1

• Assumptions generated by the semantics of Java and JML are just assumed
and not validated by ESC; RAC can optionally check them, under control
of the option --rac-check-assumptions (§8.3.48.3.4). These are listed in Table
B.2B.2.

• Some items are similarly named, beginning with either Possibly... or
Undefined... . The Possibly label is used if the condition cannot be
ruled out at the given location in Java code; the Undefined... label is
used where the condition makes a JML expression not well-defined.

Table B.1: Static warnings about assertions. These warnings are reported in
RAC if the given condition is found to be false when executing the program; the
warnings are reported in ESC if the prover cannot prove the condition is always
true.

Warning class Description

Accessible an expression uses memory locations that violate an
accessible clause

ArithmeticCastRange [§B.3B.3] the argument for an arithmetic cast operation is
out of range for the target type

ArithmeticOperationRange [§B.4B.4] the result of an arithmetic operation is out of range
for its result type

Assert [§B.5B.5] an explicit assert cannot be proved valid
AssumeCheck TBD - assumption?
Assignable [§B.6B.6] an assignment or method call violates an

assignable clause
Axiom TBD - assumption
Callable a method call violates a callable clause

Constraint [§B.8B.8] a constraint clause is not proved valid as part
of a method postcondition

ExceptionalPostcondition [§B.9B.9] an exceptional postcondition (signals clause) is
not proved valid

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 123

Static warnings about assertions (cont.)

Warning class Description

ExceptionList an exception is thrown that is not in the signals_only
exception list

Initially an initially clause is not valid as part of a constructor
postcondition

Invariant

InvariantReenterCaller

InvariantEntrance

InvariantExit

InvariantExceptionExit

InvariantExitCaller

LoopCondition

LoopDecreases the value in a loop decreases clause does not decrease
in a loop iteration

LoopDecreasesNonNegative the value in a loop decreases clause is negative at the
beginning of a loop iteration

LoopInvariant a loop invariant is not valid after the body of a loop
LoopInvariantAfterLoop a loop invariant is not valid on exit from the loop
LoopInvariantBeforeLoop a loop invariant is not valid before the first iteration of the

loop
NullCheck

NullField as part of the postcondition of a method, a class field de-
clared non_null cannot be proved to be not null

PossiblyBadCast a reference expression cannot be proved to have the type
requested in the cast

PossiblyBadArrayAssignment assignment of a reference to an array where the reference
type is not a subtype of the underlying array index type
(a Java ArrayStoreException)

PossiblyNegativeIndex [§B.11B.11] the index of an array index operation is negative
PossiblyNegativeSize [§B.12B.12] an array creation expression has a negative size
PossiblyNullDeReference an expression being dereferenced is null
PossiblyNullField a NonNull field has a null value when checked as part of

invariants CHECK
PossiblyNullValue the value for a switch, throw, or synchronized statement

is null
PossiblyNullUnbox a null reference is being unboxed to a primitive
PossiblyNullAssignment a null value is being assigned to a NonNull location
PossiblyNullInitialization a NonNull field or variable is being initialized with a null

value

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 124

Static warnings about assertions (cont.)

Warning class Description

PossiblyTooLargeIndex [§B.13B.13] the index of an array index operation is larger or
equal to the array length

PossiblyDivideByZero the denominator of a division operation is 0
PossiblyLargeShift the shift amount in a left shift operation is larger or equal

to the number of bits in the left-hand argument (this is
not illegal in Java, but usually surprises users)

Postcondition [§B.14B.14] a postcondition (ensures clause) is not valid
Precondition [§B.15B.15] the composite precondition of a method being

called cannot be proved valid
Reachable there is no execution path to a Reachable statement

(ESC only)
Readable-if a field is read when the readable-if condition is not valid
StaticInit invariants or non-nullness of fields cannot be proved valid

in static initialization
UndefinedBadCast within a JML expression, a reference expression cannot be

proved to have the type requested in the cast
UndefinedDivideByZero the denominator of a division operation is 0 in a JML ex-

pression
UndefinedNegativeIndex the index of an array index operation is negative in a JML

expression
UndefinedNegativeSize the size of an array is negative in a JML expression
UndefinedNullDeReference an expression being dereferenced is null in a JML expres-

sion
UndefinedNullUnbox a null reference is being unboxed to a primitive in a JML

expression
UndefinedNullValue in a JML expression, an expression in a switch, throw or

syncronized expression is null
UndefinedPrecondition the precondition of a (pure) method being called in a JML

expression does not hold
UndefinedTooLargeIndex the index of an array index operation is larger or equal to

the array length in a JML expression
Unreachable there is an execution path to a unreachable statement
Writable-if a field is written when the readable-if condition is not

valid

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 125

Table B.2: RAC warnings about assumptions (RAC only). These warnings are
enabled only when -rac-check-assumptions is enabled.

Warning class Description

ArrayInit

ArgumentValue

Assignment

Assume an explicit assume statement is found to
be invalid

CatchCondition

ImplicitAssume reported when an implicit assumption,
generated internally by OpenJML, is
found to be invalid

LoopInvariantAssumption

Lbl

MethodAxiom

MethodDefinition

NullField a class field designated non_null is found
to be null when read

Precondition reported when the composite precondi-
tion of a method called within the body
of the method being checked is found to
be invalid during execution (check occurs
in callee)

ReceiverValue

Return

SwitchValue

Synthetic

Termination

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 126

B.2 Examples
For convenience, the failures are listed in alphabetical order by warning id, as
given in an error message.

Each failure is illustrated with an example. In each case the example is a class
Demo.java. To run these examples, prefix the openjml and \openjml-java

executables with the path to the installation folder on your system, or put the
installation folder on your $PATH.

The results of running RAC on each example are similar and not shown. To run
RAC, include in the Demo class this main method:

1 @org.jmlspecs.annotation.SkipEsc
2 @org.jmlspecs.annotation.SkipRac
3 public static void main(String ... args) {
4 int i = args.length == 0 ? 0 : Integer.parseInt(args[0]);
5 demo(i);
6 }

Then compile the Demo class with the command
openjml --rac Demo.java

and run it with the command
openjml-java -cp . Demo

Adding different numeric arguments to the end of the command will elicit dif-
ferent behaviors.

B.3 ArithmeticCastRange warning
The ArithmeticCastRange failure message is issued whenever an explicit
cast operation might cause a truncation in the value.

1 public class Demo {
2

3 //@ requires 0 <= i && i < 32768;
4 static public void demo(int i) {
5 short k = (short)i;
6 byte b = (byte)i;
7 }
8 }

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 127

The result of ESC is

1 Demo.java:6: verify: The prover cannot establish an assertion (
ArithmeticCastRange) in method demo

2 byte b = (byte)i;
3 ^
4 1 verification failure

Here the precondition limits the value of the argument i to be within the range
of the short data type. So nomessage is issued for the cast to a short. However
the same is not true of the cast to byte, so OpenJML warns about this cast.

The semantics of Java permit casts to truncate the integer values in this way, so
the program is not in error. However, it may not be what the writer intended.
If the intention is indeed to truncate the value, then the warning can be safely
ignored.

B.4 ArithmeticOperationRangewarning
The ArithmeticOperationRange verification failure is issued whenever an
arithmetic operation cannot be assured to not cause an over or underflow. Note
that over or underflow is a property of the operation, not of any subsequent as-
signment of the intermediate value produced by the operation.

1 public class Demo {
2

3 static public void demo(int i) {
4 int kkk = i + i + i;
5 int k = i * i;
6 }
7

8 //@ requires i >= 0 && i < 32000;
9 static public void demo2(int i) {
10 int kk = i + i;
11 int k = i * i * i * i;
12 }
13 }

The result of ESC is

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 128

1 Demo.java:5: verify: The prover cannot establish an assertion (
ArithmeticOperationRange) in method demo: int multiply
overflow

2 int k = i * i;
3 ^
4 Demo.java:4: verify: The prover cannot establish an assertion (

ArithmeticOperationRange) in method demo: underflow in int
sum

5 int kkk = i + i + i;
6 ^
7 Demo.java:4: verify: The prover cannot establish an assertion (

ArithmeticOperationRange) in method demo: overflow in int sum
8 int kkk = i + i + i;
9 ^
10 Demo.java:4: verify: The prover cannot establish an assertion (

ArithmeticOperationRange) in method demo: overflow in int sum
11 int kkk = i + i + i;
12 ^
13 Demo.java:4: verify: The prover cannot establish an assertion (

ArithmeticOperationRange) in method demo: underflow in int
sum

14 int kkk = i + i + i;
15 ^
16 Demo.java:11: verify: The prover cannot establish an assertion (

ArithmeticOperationRange) in method demo2: int multiply
overflow

17 int k = i * i * i * i;
18 ^
19 Demo.java:11: verify: The prover cannot establish an assertion (

ArithmeticOperationRange) in method demo2: int multiply
overflow

20 int k = i * i * i * i;
21 ^
22 7 verification failures

Inmethod demo, the value of the argument is unconstrained, so it is possible that
an overflow or underflow can occur on addition or multiplication. In method
demo2, the value is constrained, so addition overflow and underflow cannot
occur.

The semantics of Java permits integer operations to overflow and wrap-around
in 2’s-complement arithmetic. So if intended, the operation is not illegal; how-
ever it can cause confusion. For instance, in Java, (x+ 1) > (y+ 1) does not

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 129

mean x > y, because y might be the maximum value of an int, and y+ 1 the
minimum value.

Even if an operation’s result is out of range, the result is still the result Javawould
give and no assumptions are made that restrict the operands’ values.

B.5 Assert warning
TheAssert failure is issuedwhenever an explicit JML assert statement is false.

1 public class Demo {
2

3 static public int demo(int i) {
4 if (i > 0) return 1;
5 //@ assert i < 0;
6 return i;
7 }
8

9 //@ requires i >= 0;
10 static public int demo2(int i) {
11 if (i > 0) return 1;
12 //@ assert i == 0;
13 return i;
14 }
15 }

The result of ESC is
1 Demo.java:5: verify: The prover cannot establish an assertion (Assert) in method

demo
2 //@ assert i < 0;
3 ^
4 1 verification failure

Note that the assert in method demo2 does not provoke a verification failure
message because the combination of the precondition for the method and the
branch condition on the line above imply that the assert is valid.

B.6 Assignable warning
An Assignable verification warning indicates that a memory location is be-
ing written to that is not listed in the frame condition of the method’s specifi-
cation.

For example, this example

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 130

1 public class Demo {
2 public int f;
3

4 //@ assigns \nothing;
5 public void demo(int i) {
6 f = i; // ERROR - f is not in assigns clause
7 }
8 }

produces this output
1 Demo.java:6: verify: The prover cannot establish an assertion (Assignable: Demo.

java:4:) in method demo: f
2 f = i; // ERROR - f is not in assigns clause
3 ^
4 Demo.java:4: verify: Associated declaration: Demo.java:6:
5 //@ assigns \nothing;
6 ^
7 2 verification failures

B.7 Assume warning (RAC only)
assume statements are a means to state conditions that are known to be true,
but might not be provable by OpenJML; they may also be used to restrict the
range of expected values for some quantities at a given point in the program.
ESC assumes the predicate is true and uses it to establish later conditions.

RAC has the option to check if indeed the predicate in an assume statement is
true, by using the --rac-check-assumptions option.

Thus this code

1 public class Demo {
2

3 static public int demo(int i) {
4 if (i > 0) return 1;
5 //@ assume i < 0;
6 return i;
7 }
8 @org.jmlspecs.annotation.SkipEsc
9 @org.jmlspecs.annotation.SkipRac
10 public static void main(String ... args) {
11 int i = args.length == 0 ? 0 : Integer.parseInt(args[0]);
12 demo(i);
13 }

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 131

14 }

compiled with
openjml --rac --rac-check-assumptions Demo.java

and run with
openjml-java -cp . Demo 0

results in

1 Demo.java:5: verify: JML assumption is false
2 //@ assume i < 0;
3 ^

Without the --rac-check-assumptions option, no output is emitted.

B.8 Constraint warning
A Constraint failure is issued when the property stated in a constraint

clause cannot be assured to hold at the exit of a non-constructor method. The
constraint clause is shorthand for a postcondition that would be part of each
behavior of each method’s specification. A constraint is typically used to
state relationships between pre- and post-states that should be maintained by
each method.

The following example shows a case where the constraint states that the count
value will increase in each method:

1 public class Demo {
2

3 private /*@ spec_public */ int count;
4

5 //@ public constraint count > \old(count);
6

7 //@ requires count < Integer.MAX_VALUE;
8 //@ assignable count;
9 public void increment() {
10 count++;
11 }
12

13 //@ assignable \nothing;
14 //@ ensures \result == count;

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 132

15 public int count() {
16 return count;
17 }
18 }

That property is true for the increment() method, but it is not true for the
count() method. If the writer intended that count record the number of
method calls made, then count() should also increment the count field. On
the other hand, if count is just the number of increment() calls, then the
constraint should use >= instead of >. The specification and implementation
are inconsistent, but without knowing more, we cannot say which is incorrect.
In any case, OpenJML issues a warning:

1 Demo.java:16: verify: The prover cannot establish an assertion (
Constraint: Demo.java:5:) in method count

2 return count;
3 ^
4 Demo.java:5: verify: Associated declaration: Demo.java:16:
5 //@ public constraint count > \old(count);
6 ^
7 2 verification failures

B.9 ExceptionalPostconditionwarning
The ExceptionalPostconditionwarning is issuedwhen the exceptional post-
condition, that is, the signals clause, of some behavior of the method cannot
be proved true. The exceptional postcondition is the conjunction, in order, of the
signals clauses of the behavior; note that the implicit postcondition of a signals
clause is, if the method terminates with an exception and the exception’s type
is an instance of the named exception (including any subclass of the exception),
then the stated condition must be true. That is, for each clause of the form

signals (Exc e)expr ;
for an exception type (subclass of java.lang.Exception Exc and arbitrary
variable e, the condition

(e instanceof Exc)→ expr
must be true, if the method terminates with an exception.

Remember that JML makes no assurances of behavior if a method terminates
with a java.lang.Throwable that is not a java.lang.Exception. Also
all clauses of a behavior apply only in cases in which the precondition of the

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 133

behavior is true.

In the following example of an ExceptionalPostcondition warning, the
specification of demo says that on exit from the method the value of field
will be set to the value of the argument i, whether the method exits normally
or exceptionally. We can see by inspection that the method init does noth-
ing. However, the specification of init, which is all that is used in checking the
behavior of demo, says nothing about its behavior. In particular, according to
init’s specification, init may throw a runtime exception; if it does then the
assignment to field in method demo is skipped and the signals clause does
not hold.

1 public class Demo {
2

3 static public int field;
4

5 //@ ensures field == i;
6 //@ signals (Exception e) field == i;
7 static public void demo(int i) {
8 init();
9 field = i;
10 }
11

12 static void init() {
13 }
14 }

Applying ESC to this example indeed produces an ExceptionalPostcondition
warning:

1 Demo.java:8: verify: The prover cannot establish an assertion (
ExceptionalPostcondition: Demo.java:6:) in method demo

2 init();
3 ^
4 Demo.java:6: verify: Associated declaration: Demo.java:8:
5 //@ signals (Exception e) field == i;
6 ^
7 2 verification failures

B.10 Initially warning
An Initially failuremessage is issuedwhen the property stated in an initially
clause cannot be assured to hold at the exit of a constructor. The initially

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 134

clause is shorthand for a postcondition that would be part of each behavior of
each constructor’s specification, including any unwritten default specification
any unwritten default constructor.

The following example illustrates the combination of an initially clause and
a default constructor:

1 public class Demo {
2

3 public int count;
4

5 //@ public initially count > 0;
6

7 }

The result of ESC on this example is

1 Demo.java:1: verify: The prover cannot establish an assertion (
Initially: Demo.java:5:) in method Demo

2 public class Demo {
3 ^
4 Demo.java:5: verify: Associated declaration: Demo.java:1:
5 //@ public initially count > 0;
6 ^
7 2 verification failures

Here the default constructor leaves the field i at its default value of 0, in violation
of the initially clause. Hence, OpenJML issues a warning. Since the default
constructor does not appear in the text of the class, the warning message points
to the class name.

B.11 PossiblyNegativeIndex warning
Array indices in array element access or assignment expressions must be non-
negative values smaller than the size of the array. A PossiblyNegativeIndex

verification failure is issued if OpenJML cannot prove that the index of an array
access or assignment expression is non-negative.

Applying ESC to this example

1 public class Demo {

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 135

2

3 public static int[] arr;
4

5 //@ requires i < arr.length;
6 static public int demo(int i) {
7 return arr[i];
8 }
9 }

results in this output:

1 Demo.java:7: verify: The prover cannot establish an assertion (
PossiblyNegativeIndex) in method demo

2 return arr[i];
3 ^
4 1 verification failure

B.12 PossiblyNegativeSize warning
Java allows constructing new arrays with a run-time determined size, as in

int[] array = new int[x];

However, trying to create an array with a negative size will result in a run-
time error (a NegativeArraySizeException exception). OpenJML issues a
PossiblyNegativeSize verification failure if it cannot prove that the argu-
ment of an array allocation expression is non-negative.

Applying ESC to this example

1 public class Demo {
2

3 static public int[] demo(int i) {
4 return new int[i];
5 }
6

7 //@ requires i >= 0;
8 static public int[] demo2(int i) {
9 return new int[i];
10 }
11

12

13 }

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 136

results in this output:

1 Demo.java:4: verify: The prover cannot establish an assertion (
PossiblyNegativeSize) in method demo

2 return new int[i];
3 ^
4 1 verification failure

B.13 PossiblyTooLargeIndex warning
Array indices in array element access or assignment expressions must be non-
negative values smaller than the size of the array. OpenJML issues a PossiblyTooLargeIndex
verification failure if it cannot prove that the index of an array access or assign-
ment expression is less than the size of the array.

Applying ESC to this example

1 public class Demo {
2

3 public static int[] arr;
4

5 //@ requires 0 <= i;
6 static public int demo(int i) {
7 return arr[i];
8 }
9

10 //@ requires 0 <= i && i < arr.length ;
11 static public int demo2(int i) {
12 return arr[i];
13 }
14

15 }

results in this output:

1 Demo.java:7: verify: The prover cannot establish an assertion (
PossiblyTooLargeIndex) in method demo

2 return arr[i];
3 ^
4 1 verification failure

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 137

In demo2, the range of the index is appropriately restricted so no verification
failure is issued.

B.14 Postcondition warning
The Postcondition verification failure is issued when the postcondition of
some behavior of the method is false. The postcondition is the conjunction,
in order, of the ensures clauses of the behavior. There is a possible additional
implicit postcondition that the result of of the method is non-null, if it is so
declared (perhaps by default). If the precondition is not true for a behavior, then
the postcondition need not be true. Postconditions apply only if the method
terminates normally; they do not apply if the method ends with an exception,
end with exiting the program (abruptly), or does not terminate at all.

This example shows a situation in which the implicit non-null-ness of the return
value is not established.

1 public class Demo {
2

3 static public void demo(int i) {
4 mm(i);
5 }
6

7 //@ requires i > 0;
8 //@ ensures \result == 1;
9 //@ also
10 //@ requires i == 0;
11 //@ ensures \result == 0;
12 //@ also
13 //@ requires i < 0;
14 //@ ensures \result == -1;
15 static Integer mm(int i) { // NonNull by default
16 if (i > 0) return 1;
17 if (i < 0) return -1;
18 return null;
19 }
20 }

The result of ESC is

1 Demo.java:15: verify: The prover cannot establish an assertion (
PossiblyNullReturn: Demo.java:15:) in method mm: mm

2 static Integer mm(int i) { // NonNull by default

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 138

3 ^
4 Demo.java:15: verify: Associated declaration: Demo.java:15:
5 static Integer mm(int i) { // NonNull by default
6 ^
7 Demo.java:18: verify: Associated method exit
8 return null;
9 ^
10 3 verification failures

B.15 Precondition warning
The Precondition verification failure is issued when the precondition of a
method call is false. Note that the precondition being checked is the disjunc-
tion of the preconditions of all of the behaviors of the called method, including
any inherited behaviors. That is, at least one of the behaviors must have a true
precondition. The precondition of a behavior is the conjunction of the requires
clauses, in order, of the behavior. There are also implicit requirements: any for-
mal argument of a method that is a non-null reference type implicitly adds the
clause requires arg != null; to each behavior.

1 public class Demo {
2

3 static public void demo(int i) {
4 mm(i);
5 }
6

7 //@ requires i > 0;
8 //@ ensures \result == 1;
9 //@ also
10 //@ requires i < 0;
11 //@ ensures \result == -1;
12 static int mm(int i) {
13 if (i > 0) return 1;
14 if (i < 0) return -1;
15 return i;
16 }
17 }

The result of ESC is

1 Demo.java:4: verify: The prover cannot establish an assertion (
Precondition: Demo.java:12:) in method demo

2 mm(i);

APPENDIX B. STATIC AND RUNTIME VERIFICATION FAILURE EXAMPLES 139

3 ^
4 Demo.java:12: verify: Associated declaration: Demo.java:4:
5 static int mm(int i) {
6 ^
7 Demo.java:7: verify: Precondition conjunct is false: i > 0
8 //@ requires i > 0;
9 ^
10 Demo.java:10: verify: Precondition conjunct is false: i < 0
11 //@ requires i < 0;
12 ^
13 4 verification failures

Note that when the precondition is the disjunction of multiple lines, the line
reference in the message points to just one of them. It is important to not forget
the other, especially inherited preconditions.

Check that all warnings are included; finish them all

Bibliography

[1] ANSI-C Specification Language. https://github.com/acsl-language/acsl/https://github.com/acsl-language/acsl/. 11, 33,
66

[2] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Pe-
ter H. Schmitt, and Mattias Ulbrich. Deductive software verification â€“
the key book. In Lecture Notes in Computer Science, 2016. iviv

[3] John Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison Wesley, New York, NY, 2003. 11, 33

[4] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and
Wolfram Schulte. Verification of object-oriented programs with invariants.
Journal of Object Technology, 3(6):27–56, 2004. 66

[5] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# pro-
gramming system: An overview. In Gilles Barthe, Lilian Burdy, Marieke
Huisman, Jean-Louis Lanet, and TraianMuntean, editors, Construction and
Analysis of Safe, Secure, and Interoperable Smart devices (CASSIS 2004), vol-
ume 3362 of Lecture Notes in Computer Science, pages 49–69, New York, NY,
2005. Springer-Verlag. 11, 33, 66

[6] Régis Blanc, Viktor Kuncak, Etienne Kneuss, and Philippe Suter. An
Overview of the Leon Verification System: Verification by Translation to
Recursive Functions. In Proceedings of the 4th Workshop on Scala, SCALA
’13, New York, NY, USA, 2013. Association for Computing Machinery. 11

[7] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R.
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview
of JML tools and applications. In Thomas Arts and Wan Fokkink, editors,
Eighth International Workshop on Formal Methods for Industrial Critical Sys-

140

https://github.com/acsl-language/acsl/

BIBLIOGRAPHY 141

tems (FMICS 03), volume 80 of Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), pages 73–89. Elsevier, June 2003. iviv

[8] David R. Cok. Openjml: Jml for java 7 by extending openjdk. InMihaela Bo-
baru, Klaus Havelund, GerardJ. Holzmann, and Rajeev Joshi, editors, NASA
Formal Methods, volume 6617 of Lecture Notes in Computer Science, pages
472–479. Springer Berlin Heidelberg, 2011. iiii

[9] David R. Cok. The jSMTLIB User Guide, 2013.
https://smtlib.github.io/jSMTLIB/https://smtlib.github.io/jSMTLIB/. 5656

[10] David R. Cok, 2018. http://www.openjml.orghttp://www.openjml.org. iiii

[11] David R. Cok. JML andOpenJML for Java 16. In Proceedings of the 23rd ACM
International Workshop on Formal Techniques for Java-like Programs, FTfJP
2021, page 65â€“67, New York, NY, USA, 2021. Association for Computing
Machinery. iiii

[12] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2, including a case study
involving the use of the tool to verify portions of an Internet voting tally
system. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet,
and Traian Muntean, editors, Construction and Analysis of Safe, Secure, and
Interoperable Smart devices (CASSIS 2004), volume 3362 of Lecture Notes in
Computer Science, pages 108–128. Springer-Verlag, 2005. ii, iiiiii, iviv, 66

[13] David R. Cok, Gary T. Leavens, and Mattias Ulbrich. Java Model-
ing Language (JML) Reference Manual, 2nd edition, 2022. In progress.
https://www.openjml.org/documentation/JML_Reference_Manual.pdfhttps://www.openjml.org/documentation/JML_Reference_Manual.pdf. 11, 33

[14] David R. Cok and Serdar Tasiran. Practical methods for reasoning about
java 8’s functional programming features. In Ruzica Piskac and Philipp
Rümmer, editors, Verified Software. Theories, Tools, and Experiments, pages
267–278. Springer International Publishing, 2018. iiii

[15] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Ex-
tended static checking. SRC Research Report 159, Compaq Systems Re-
search Center, 130 Lytton Ave., Palo Alto, December 1998. 66

[16] Michael Ernst and students. The Checker Framework.
https://checkerframework.org/manual/https://checkerframework.org/manual/. 66

https://smtlib.github.io/jSMTLIB/
http://www.openjml.org
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://checkerframework.org/manual/

BIBLIOGRAPHY 142

[17] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI’02), volume 37(5) of SIGPLAN, pages 234–
245, New York, NY, June 2002. ACM. iiiiii, iviv

[18] Frama-C. https://frama-c.comhttps://frama-c.com. 66

[19] Patrice Godefroid. The soundness of bugs
is what matters (position statement), 2005.
https://alastairreid.github.io/RelatedWork/papers/godefroid:bugs:2005/https://alastairreid.github.io/RelatedWork/papers/godefroid:bugs:2005/. 104104

[20] Michael Hicks. What is soundness (in static analysis)?
http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/.
104104

[21] Documentation for javac.
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#optionshttps://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#options.
3131

[22] The KeY project. https://www.key-project.orghttps://www.key-project.org. iviv, 33, 66, 2222

[23] Gary T. Leavens. http://www.jmlspecs.orghttp://www.jmlspecs.org. 11, 33

[24] Gary T. Leavens, David R. Cok, and Amirfarhad Nilizadeh. Further Lessons
from the JML Project, 2022. Accepted for publication. iiiiii

[25] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David R. Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, and Daniel M.
Zimmerman. JML referencemanual. Available from http://www.jmlspecs.orghttp://www.jmlspecs.org,
September 2009. 11, 55

[26] K. Rustan M. Leino et al. Dafny github site. https://github.com/dafny-
lang/dafny. Accessed September 2021. 11, 33, 66

[27] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták,
J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker,
Anders Møller, and Dimitrios Vardoulakis. In defense of soundiness: A
manifesto. Commun. ACM, 58(2):44?46, January 2015. 104104

[28] Stainless verification framework. https://epfl-lara.github.io/stainless/intro.htmlhttps://epfl-lara.github.io/stainless/intro.html.
11, 33

https://frama-c.com
https://alastairreid.github.io/RelatedWork/papers/godefroid:bugs:2005/
http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html##options
https://www.key-project.org
http://www.jmlspecs.org
http://www.jmlspecs.org
https://epfl-lara.github.io/stainless/intro.html

BIBLIOGRAPHY 143

[29] Yichen Xie, Mayur Naik, Brian Hackett, and Alex Aiken. Sound-
ness and its role in bug detection systems (position paper), 2005.
https://alastairreid.github.io/RelatedWork/papers/xie:bugs:2005/https://alastairreid.github.io/RelatedWork/papers/xie:bugs:2005/. 104104

https://alastairreid.github.io/RelatedWork/papers/xie:bugs:2005/

Index

–-logic, 5757
-?, 4040
-Akey, 4343
-J, 4343
-Werror, 4242
-X, 4040, 4343
-Xprefer, 1616, 4545
-Xprefer:newer, 4242
-Xprefer:source, 4242
-bootclasspath, 4343
-classpath, 4242
-cp, 4242
-d, 4242
-deprecation, 4242
-ea, 7070
-encoding, 4343
-endorsedirs, 4343
-extdirs, 4343
-g, 4343
-help, 4040
-implicit, 4343
-java, 3838
-jml, 3838
-jmltesting, 4141
-m, 4444
-no-jml, 3838
-nowarn, 4242
-p, 4444
-proc, 4444
-processor, 4444

-processorpath, 4444
-s, 4242
-sourcepath, 4242
-verbose, 4242
--add-module, 4444
--arithmetic-failure, 2828
--check, 3838, 4646
--check-accessible, 5959
--check-specs-path, 3939
--class-path, 4242
--command, 3838
--compile, 3838
--dir, 1111
--dir, 3939
--dirs, 1111
--dirs, 3939
--doc, 3838
--esc, 3838
--esc-bv, 2929
--esc-max-warnings, 4848
--esc-max-warnings-path, 4848
--extensions, 9999
--help, 4040
--help-extra, 4040
--jmldebug, 4040
--jmlverbose, 4040
--keys, 3939, 9696
--lang, 7979
--limit-modules, 4444
--module, 4444

144

INDEX 145

--module-path, 4444
--module-source-path, 4444
--module-version, 4444
--no-check-specs-path, 1717
--no-smt, 6262
--nonnull-by-default, 3939
--normal, 4040
--nullable-by-default, 3939
--os-name, 5757
--progress, 4040
--purity-check, 4646
--quiet, 4040
--rac, 3838, 6363
--require-white-space, 4545
--show, 4141
--show-not-implemented, 3939
--silent, 4040
--smt, 6161
--solver-seed, 6161
--source, 4141
--source-path, 4242
--specs-path, 3939
--split, 8989
--split, 6060, 8989
--stop-if-parse-errors, 4545
--target, 4242
--timeout, 5050, 6161
--upgrade-module-path, 4444
--verbose, 4040
--verboseness, 4040
--verify-exit, 6161
--version, 4040
--warn, 4343
\exception, 9696
\key, 9696, 9797
immutable, 9494
inline, 9393
query, 9494

secret, 9494
--check-feasibility, 5151
--esc-bv, 2828
--rac-java-checks, 6969
--rac-show-source, 6565
--show-not-executable, 6565
--show-not-implemented, 6565
ArithmeticCastRangewarning, 126126
ArithmeticOperationRangewarn-

ing, 127127
Assert warning, 129129
Assignable warning, 129129
Assume warning, 130130
Constraint warning, 131131
ExceptionalPostconditionwarn-

ing, 132132
Initially warning, 133133
PossiblyNegativeIndexwarning,

134134
PossiblyNegativeSize warning,

135135
PossiblyTooLargeIndexwarning,

136136
Postcondition warning, 137137
Precondition warning, 138138
@<filename>, 4343
uninitialized, 108108
check statement, 8080
reachable statement, 8989
show statement, 8181

Accessible warning, 122122
annotations, 2424
ArgumentValue warning, 125125
ArithmeticCastRangewarning, 122122
ArithmeticOperationRangewarn-

ing, 122122
ArrayInit warning, 125125

INDEX 146

Assert warning, 122122
Assignable warning, 122122
Assignment warning, 125125
Assume warning, 125125
AssumeCheck warning, 122122
Axiom warning, 122122

Callable warning, 122122
CatchConditionwarning, 125125
Constraint warning, 122122

ExceptionalPostconditionwarn-
ing, 122122

ExceptionList warning, 123123

feasibility, 5050, 5151

halt statement, 8282
havoc statement, 8181

ImplicitAssumewarning, 125125
Initially warning, 123123
Invariant warning, 123123
InvariantEntrancewarning, 123123
InvariantExceptionExitwarn-

ing, 123123
InvariantExit warning, 123123
InvariantExitCallerwarning, 123123
InvariantReenterCallerwarn-

ing, 123123

Java Language Specification, 2424
JSR-308, 2525

Lbl warning, 125125
License, 66
LoopCondition warning, 123123
LoopDecreases warning, 123123
LoopDecreasesNonNegativewarn-

ing, 123123

LoopInvariant warning, 123123
LoopInvariantAfterLoopwarn-

ing, 123123
LoopInvariantAssumptionwarn-

ing, 125125
LoopInvariantBeforeLoopwarn-

ing, 123123

maps clause, 9797
MethodAxiom warning, 125125
MethodDefinitionwarning, 125125

NullCheck warning, 123123
NullField warning, 123123, 125125

OpenJDK, iviv, 11, 33, 55, 66, 110110

PossiblyBadArrayAssignmentwarn-
ing, 123123

PossiblyBadCastwarning, 123123
PossiblyDivideByZero warning,

124124
PossiblyLargeShiftwarning, 124124
PossiblyNegativeIndexwarning,

123123
PossiblyNegativeSize warning,

123123
PossiblyNullAssignmentwarn-

ing, 123123
PossiblyNullDeReferencewarn-

ing, 123123
PossiblyNullFieldwarning, 123123
PossiblyNullInitializationwarn-

ing, 123123
PossiblyNullUnboxwarning, 123123
PossiblyNullValuewarning, 123123
PossiblyTooLargeIndexwarning,

124124
Postcondition warning, 124124

INDEX 147

Preconditionwarning, 124124, 125125

RAC, 6363
Reachable warning, 124124
Readable-if warning, 124124
ReceiverValue warning, 125125
Return warning, 125125
runtime assertion checking, 6363

split statement, 8383
static initialization, 108108
StaticInit warning, 124124
SwitchValue warning, 125125
Synthetic warning, 125125

Termination warning, 125125
type annotations, 2424

UndefinedBadCastwarning, 124124
UndefinedDivideByZerowarning,

124124
UndefinedNegativeIndexwarn-

ing, 124124
UndefinedNegativeSizewarning,

124124
UndefinedNullDeReferencewarn-

ing, 124124
UndefinedNullUnboxwarning, 124124
UndefinedNullValuewarning, 124124
UndefinedPreconditionwarning,

124124
UndefinedTooLargeIndexwarn-

ing, 124124
Unreachable warning, 124124

Warning, Accessible, 122122
Warning, ArgumentValue, 125125
Warning, ArithmeticCastRange,

122122

Warning, ArithmeticOperationRange,
122122

Warning, ArrayInit, 125125
Warning, Assert, 122122
Warning, Assignable, 122122
Warning, Assignment, 125125
Warning, AssumeCheck, 122122
Warning, Assume, 125125
Warning, Axiom, 122122
Warning, Callable, 122122
Warning, CatchCondition, 125125
Warning, Constraint, 122122
Warning, ExceptionalPostcondition,

122122
Warning, ExceptionList, 123123
Warning, ImplicitAssume, 125125
Warning, Initially, 123123
Warning, InvariantEntrance, 123123
Warning, InvariantExceptionExit,

123123
Warning, InvariantExitCaller,

123123
Warning, InvariantExit, 123123
Warning, InvariantReenterCaller,

123123
Warning, Invariant, 123123
Warning, Lbl, 125125
Warning, LoopCondition, 123123
Warning, LoopDecreasesNonNegative,

123123
Warning, LoopDecreases, 123123
Warning, LoopInvariantAfterLoop,

123123
Warning, LoopInvariantAssumption,

125125
Warning, LoopInvariantBeforeLoop,

123123
Warning, LoopInvariant, 123123

INDEX 148

Warning, MethodAxiom, 125125
Warning, MethodDefinition, 125125
Warning, NullCheck, 123123
Warning, NullField, 123123, 125125
Warning, PossiblyBadArrayAssignment,

123123
Warning, PossiblyBadCast, 123123
Warning, PossiblyDivideByZero,

124124
Warning, PossiblyLargeShift, 124124
Warning, PossiblyNegativeIndex,

123123
Warning, PossiblyNegativeSize,

123123
Warning, PossiblyNullAssignment,

123123
Warning, PossiblyNullDeReference,

123123
Warning, PossiblyNullField, 123123
Warning, PossiblyNullInitialization,

123123
Warning, PossiblyNullUnbox, 123123
Warning, PossiblyNullValue, 123123
Warning, PossiblyTooLargeIndex,

124124
Warning, Postcondition, 124124
Warning, Precondition, 124124, 125125
Warning, Reachable, 124124
Warning, Readable-if, 124124
Warning, ReceiverValue, 125125
Warning, Return, 125125
Warning, StaticInit, 124124
Warning, SwitchValue, 125125
Warning, Synthetic, 125125
Warning, Termination, 125125
Warning, UndefinedBadCast, 124124
Warning, UndefinedDivideByZero,

124124

Warning, UndefinedNegativeIndex,
124124

Warning, UndefinedNegativeSize,
124124

Warning, UndefinedNullDeReference,
124124

Warning, UndefinedNullUnbox, 124124
Warning, UndefinedNullValue, 124124
Warning, UndefinedPrecondition,

124124
Warning, UndefinedTooLargeIndex,

124124
Warning, Unreachable, 124124
Warning, Writable-if, 124124
Writable-if warning, 124124

	Introduction to JML and OpenJML
	Why specify? Why check?
	Background on OpenJML
	Other resources
	Sources of Technology
	License
	Use of this document

	Installation
	Installing OpenJML
	Organization of the installation
	Local customization

	The OpenJML Command-line Tool
	Command-line structure
	Files and Folders
	Output
	Exit values
	Other aspects of the environment

	OpenJML Concepts
	Specifications in .java and .jml files
	Finding files and classes: class, source, and specs paths
	OpenJML options, Java properties and the openjml.properties file
	SMT provers
	Conditional JML annotations (-keys option)
	Annotations and the runtime library
	Defaults for binary classes
	Redundancy in JML and OpenJML
	Nullness and non-nullness of references
	Background on non-null annotations and types
	JML features for nullness
	Nullness annotations for array declarations
	Nullness for binary classes

	Arithmetic modes
	Integer arithmetic
	Floating point arithmetic

	Integers and bit-vectors (--esc-bv option)
	Specification inference

	OpenJML Options
	General rules about options
	Options: Operational modes
	Options: JML tools
	Options: OpenJML options applicable to all OpenJML operational modes
	Options: JML Information and debugging
	Java Options: Version of Java language or class files
	Java Options: Other Java compiler options applicable to OpenJML
	Control of lint-like warnings
	Java options related to annotation processing
	Java options related to modules

	OpenJML tools — Parsing and Type-checking
	Parsing
	Type-checking JML specifications
	Command-line options for type-checking

	OpenJML tools — Static Deductive Verification (ESC)
	Results of the static verification tool
	Finding verification faults
	Checking feasibility
	Timeouts and memory-outs
	Bugs

	Checking feasibility: --check-feasibility
	Options specific to static checking
	Controlling nullness
	Choosing the solver used to check (--prover, --exec)
	Choosing what to check (--method, --exclude)
	Control over what is checked
	Detail about the proof result
	Dividing up the proof: --split
	Controlling output
	Options affecting the internal encoding
	Miscellaneous options

	OpenJML tools — Runtime Assertion Checking (RAC)
	Compiling classes with assertions
	Executing a RAC-compiled programs
	Options specific to runtime checking
	--show-not-executable
	--show-not-implemented
	--rac-show-source
	--rac-check-assumptions
	--rac-java-checks
	--rac-compile-to-java-assert
	--rac-precondition-entry

	Controlling how runtime assertion violations are reported
	Exit code from a RAC-ed program
	RAC FAQs
	Uncompiled fields and methods
	Non-executable or unimplemented features
	Try blocks too large

	OpenJML extensions to JML
	Specification statements
	check statement
	show statement
	havoc statement
	halt statement
	split statement
	reachable statement

	Modifiers
	skipesc and skiprac
	inline
	query and secret
	immutable
	@Options
	Experimental modifiers

	Expressions
	`exception
	Enhancements to conditional annotations: `key

	Enhancements to the maps clause
	Other topics to include, possibly

	Extending OpenJML
	Basic Concepts
	Organization of OpenJDK and OpenJML implementation
	Adding command-line options
	Adding modifiers
	Adding statement specification clauses
	Adding method specification clauses
	Adding class specification clauses
	Adding built-in types

	Other OpenJML tools
	Inferring specifications
	loop_modifies clauses

	Generating Documentation
	Generating Specification File Skeletons
	Generating Unit Test framework
	Generating Test Cases
	Symbolic Execution and Abstract Interpretation

	Limitations of OpenJML's implementation of JML
	Soundness and Completeness
	Java and JML features not implemented in OpenJML — General issues
	Non-conservative defaults
	Unchecked assumptions
	Verification of Java system libraries
	Java Errors
	Non-sequential Java
	Reflection
	Class loading
	Modules and annotation processing

	Java and JML features not implemented in OpenJML — Detailed items
	Clauses and expressions
	Termination
	Redundancy
	Arithmetic mode
	Quantifiers
	Static initialization
	model import statement
	Model programs
	Universe types

	Contributing to OpenJML
	GitHub
	User documentation
	Maintaining the development wiki
	Issues
	Creating and using a development environment
	Setup
	Building OpenJML

	Running tests
	Deploying a release
	Updating to newer versions of OpenJDK

	Command-line options
	Static and Runtime verification failure examples
	Tables
	Examples
	ArithmeticCastRange warning
	ArithmeticOperationRange warning
	Assert warning
	Assignable warning
	Assume warning (RAC only)
	Constraint warning
	ExceptionalPostcondition warning
	Initially warning
	PossiblyNegativeIndex warning
	PossiblyNegativeSize warning
	PossiblyTooLargeIndex warning
	Postcondition warning
	Precondition warning

